Addressing Camera Sensors Faults in Vision-Based Navigation: Simulation and Dataset Development
- URL: http://arxiv.org/abs/2507.02602v1
- Date: Thu, 03 Jul 2025 13:23:22 GMT
- Title: Addressing Camera Sensors Faults in Vision-Based Navigation: Simulation and Dataset Development
- Authors: Riccardo Gallon, Fabian Schiemenz, Alessandra Menicucci, Eberhard Gill,
- Abstract summary: This study focuses on an interplanetary exploration mission scenario.<n>A comprehensive analysis of potential fault cases in camera sensors used within the VBN pipeline is presented.<n>A simulation framework is introduced to recreate faulty conditions in synthetically generated images, enabling a systematic and controlled reproduction of faulty data.<n>The resulting dataset of fault-injected images provides a valuable tool for training and testing AI-based fault detection algorithms.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing importance of Vision-Based Navigation (VBN) algorithms in space missions raises numerous challenges in ensuring their reliability and operational robustness. Sensor faults can lead to inaccurate outputs from navigation algorithms or even complete data processing faults, potentially compromising mission objectives. Artificial Intelligence (AI) offers a powerful solution for detecting such faults, overcoming many of the limitations associated with traditional fault detection methods. However, the primary obstacle to the adoption of AI in this context is the lack of sufficient and representative datasets containing faulty image data. This study addresses these challenges by focusing on an interplanetary exploration mission scenario. A comprehensive analysis of potential fault cases in camera sensors used within the VBN pipeline is presented. The causes and effects of these faults are systematically characterized, including their impact on image quality and navigation algorithm performance, as well as commonly employed mitigation strategies. To support this analysis, a simulation framework is introduced to recreate faulty conditions in synthetically generated images, enabling a systematic and controlled reproduction of faulty data. The resulting dataset of fault-injected images provides a valuable tool for training and testing AI-based fault detection algorithms. The final link to the dataset will be added after an embargo period. For peer-reviewers, this private link is available.
Related papers
- Navigating the Challenges of AI-Generated Image Detection in the Wild: What Truly Matters? [9.916527862912941]
We introduce ITW-SM, a new dataset of real and AI-generated images collected from major social media platforms.<n>We identify four key factors that influence AID performance in real-world scenarios.<n>Our modifications result in an average AUC improvement of 26.87% across various AID models under real-world conditions.
arXiv Detail & Related papers (2025-07-14T12:56:55Z) - RAID: A Dataset for Testing the Adversarial Robustness of AI-Generated Image Detectors [57.81012948133832]
We present RAID (Robust evaluation of AI-generated image Detectors), a dataset of 72k diverse and highly transferable adversarial examples.<n>Our methodology generates adversarial images that transfer with a high success rate to unseen detectors.<n>Our findings indicate that current state-of-the-art AI-generated image detectors can be easily deceived by adversarial examples.
arXiv Detail & Related papers (2025-06-04T14:16:00Z) - Synthesizing and Identifying Noise Levels in Autonomous Vehicle Camera Radar Datasets [2.435006380732195]
We create a realistic synthetic data augmentation pipeline for camera-radar Autonomous Vehicle datasets.<n>Our goal is to accurately simulate sensor failures and data deterioration due to real-world interferences.<n>We also present our results of a baseline lightweight Noise Recognition neural network trained and tested on our augmented dataset.
arXiv Detail & Related papers (2025-05-01T15:15:50Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - AssemAI: Interpretable Image-Based Anomaly Detection for Manufacturing Pipelines [0.0]
Anomaly detection in manufacturing pipelines remains a critical challenge, intensified by the complexity and variability of industrial environments.
This paper introduces AssemAI, an interpretable image-based anomaly detection system tailored for smart manufacturing pipelines.
arXiv Detail & Related papers (2024-08-05T01:50:09Z) - Research, Applications and Prospects of Event-Based Pedestrian Detection: A Survey [10.494414329120909]
Event-based cameras, inspired by the biological retina, have evolved into cutting-edge sensors distinguished by their minimal power requirements, negligible latency, superior temporal resolution, and expansive dynamic range.
Event-based cameras address limitations by eschewing extraneous data transmissions and obviating motion blur in high-speed imaging scenarios.
This paper offers an exhaustive review of research and applications particularly in the autonomous driving context.
arXiv Detail & Related papers (2024-07-05T06:17:00Z) - OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
Trajectory prediction is fundamental in computer vision and autonomous driving.
Existing approaches in this field often assume precise and complete observational data.
We present a novel method for out-of-sight trajectory prediction that leverages a vision-positioning technique.
arXiv Detail & Related papers (2024-04-02T18:30:29Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
This study introduces a taxonomy for log anomalies and explores automated data labeling to mitigate labeling challenges.
The study envisions a future where root cause analysis follows anomaly detection, unraveling the underlying triggers of anomalies.
arXiv Detail & Related papers (2023-12-22T15:04:20Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - Understanding the Challenges and Opportunities of Pose-based Anomaly
Detection [2.924868086534434]
Pose-based anomaly detection is a video-analysis technique for detecting anomalous events or behaviors by examining human pose extracted from the video frames.
In this work, we analyze and quantify the characteristics of two well-known video anomaly datasets to better understand the difficulties of pose-based anomaly detection.
We believe these experiments are beneficial for a better comprehension of pose-based anomaly detection and the datasets currently available.
arXiv Detail & Related papers (2023-03-09T18:09:45Z) - EmergencyNet: Efficient Aerial Image Classification for Drone-Based
Emergency Monitoring Using Atrous Convolutional Feature Fusion [8.634988828030245]
This article focuses on the efficient aerial image classification from on-board a UAV for emergency response/monitoring applications.
A dedicated Aerial Image Database for Emergency Response applications is introduced and a comparative analysis of existing approaches is performed.
A lightweight convolutional neural network architecture is proposed, referred to as EmergencyNet, based on atrous convolutions to process multiresolution features.
arXiv Detail & Related papers (2021-04-28T20:24:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.