On Efficient Bayesian Exploration in Model-Based Reinforcement Learning
- URL: http://arxiv.org/abs/2507.02639v1
- Date: Thu, 03 Jul 2025 14:03:47 GMT
- Title: On Efficient Bayesian Exploration in Model-Based Reinforcement Learning
- Authors: Alberto Caron, Chris Hicks, Vasilios Mavroudis,
- Abstract summary: We address the challenge of data-efficient exploration in reinforcement learning by examining existing principled, information-theoretic approaches to intrinsic motivation.<n>We prove that exploration bonuses naturally signal epistemic information gains and converge to zero once the agent becomes sufficiently certain about the environment's dynamics and rewards.<n>We then outline a general framework - Predictive Trajectory Sampling with Bayesian Exploration (PTS-BE) - which integrates model-based planning with information-theoretic bonuses to achieve sample-efficient deep exploration.
- Score: 0.24578723416255752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we address the challenge of data-efficient exploration in reinforcement learning by examining existing principled, information-theoretic approaches to intrinsic motivation. Specifically, we focus on a class of exploration bonuses that targets epistemic uncertainty rather than the aleatoric noise inherent in the environment. We prove that these bonuses naturally signal epistemic information gains and converge to zero once the agent becomes sufficiently certain about the environment's dynamics and rewards, thereby aligning exploration with genuine knowledge gaps. Our analysis provides formal guarantees for IG-based approaches, which previously lacked theoretical grounding. To enable practical use, we also discuss tractable approximations via sparse variational Gaussian Processes, Deep Kernels and Deep Ensemble models. We then outline a general framework - Predictive Trajectory Sampling with Bayesian Exploration (PTS-BE) - which integrates model-based planning with information-theoretic bonuses to achieve sample-efficient deep exploration. We empirically demonstrate that PTS-BE substantially outperforms other baselines across a variety of environments characterized by sparse rewards and/or purely exploratory tasks.
Related papers
- An Information-Geometric Approach to Artificial Curiosity [49.1574468325115]
We show that intrinsic rewards should depend on the agent's information about the environment, remaining to the representation of the information.<n>We show that invariance under congruent Markov morphisms and the agent-environment interaction, uniquely constrains intrinsic rewards to concave functions of the reciprocal occupancy.<n>This framework provides important constraints to the engineering of intrinsic reward while integrating foundational exploration methods into a single, cohesive model.
arXiv Detail & Related papers (2025-04-08T18:04:15Z) - Exploratory Diffusion Model for Unsupervised Reinforcement Learning [28.413426177336703]
Unsupervised reinforcement learning (URL) aims to pre-train agents by exploring diverse states or skills in reward-free environments.<n>Existing methods design intrinsic rewards to model the explored data and encourage further exploration.<n>We propose the Exploratory Diffusion Model (ExDM), which leverages the strong expressive ability of diffusion models to fit the explored data.
arXiv Detail & Related papers (2025-02-11T05:48:51Z) - Exploring the Precise Dynamics of Single-Layer GAN Models: Leveraging Multi-Feature Discriminators for High-Dimensional Subspace Learning [0.0]
We study the training dynamics of a single-layer GAN model from the perspective of subspace learning.
By bridging our analysis to the realm of subspace learning, we systematically compare the efficacy of GAN-based methods against conventional approaches.
arXiv Detail & Related papers (2024-11-01T10:21:12Z) - Random Latent Exploration for Deep Reinforcement Learning [71.88709402926415]
We introduce Random Latent Exploration (RLE), a simple yet effective exploration strategy in reinforcement learning (RL)<n>On average, RLE outperforms noise-based methods, which perturb the agent's actions, and bonus-based exploration, which rewards the agent for attempting novel behaviors.<n>RLE is as simple as noise-based methods, as it avoids complex bonus calculations but retains the deep exploration benefits of bonus-based methods.
arXiv Detail & Related papers (2024-07-18T17:55:22Z) - A Bayesian Approach to Robust Inverse Reinforcement Learning [54.24816623644148]
We consider a Bayesian approach to offline model-based inverse reinforcement learning (IRL)
The proposed framework differs from existing offline model-based IRL approaches by performing simultaneous estimation of the expert's reward function and subjective model of environment dynamics.
Our analysis reveals a novel insight that the estimated policy exhibits robust performance when the expert is believed to have a highly accurate model of the environment.
arXiv Detail & Related papers (2023-09-15T17:37:09Z) - On the Importance of Exploration for Generalization in Reinforcement
Learning [89.63074327328765]
We propose EDE: Exploration via Distributional Ensemble, a method that encourages exploration of states with high uncertainty.
Our algorithm is the first value-based approach to achieve state-of-the-art on both Procgen and Crafter.
arXiv Detail & Related papers (2023-06-08T18:07:02Z) - Self-supervised network distillation: an effective approach to exploration in sparse reward environments [0.0]
Reinforcement learning can train an agent to behave in an environment according to a predesigned reward function.
The solution to such a problem may be to equip the agent with an intrinsic motivation that will provide informed exploration.
We present Self-supervised Network Distillation (SND), a class of intrinsic motivation algorithms based on the distillation error as a novelty indicator.
arXiv Detail & Related papers (2023-02-22T18:58:09Z) - Dynamic Bottleneck for Robust Self-Supervised Exploration [84.78836146128236]
We propose a Dynamic Bottleneck (DB) model, which attains a dynamics-relevant representation based on the information-bottleneck principle.
Based on the DB model, we further propose DB-bonus, which encourages the agent to explore state-action pairs with high information gain.
Our experiments show that exploration with DB bonus outperforms several state-of-the-art exploration methods in noisy environments.
arXiv Detail & Related papers (2021-10-20T19:17:05Z) - On Reward-Free RL with Kernel and Neural Function Approximations:
Single-Agent MDP and Markov Game [140.19656665344917]
We study the reward-free RL problem, where an agent aims to thoroughly explore the environment without any pre-specified reward function.
We tackle this problem under the context of function approximation, leveraging powerful function approximators.
We establish the first provably efficient reward-free RL algorithm with kernel and neural function approximators.
arXiv Detail & Related papers (2021-10-19T07:26:33Z) - Focus on Impact: Indoor Exploration with Intrinsic Motivation [45.97756658635314]
In this work, we propose to train a model with a purely intrinsic reward signal to guide exploration.
We include a neural-based density model and replace the traditional count-based regularization with an estimated pseudo-count of previously visited states.
We also show that a robot equipped with the proposed approach seamlessly adapts to point-goal navigation and real-world deployment.
arXiv Detail & Related papers (2021-09-14T18:00:07Z) - Variational Dynamic for Self-Supervised Exploration in Deep Reinforcement Learning [12.76337275628074]
In this work, we propose a variational dynamic model based on the conditional variational inference to model the multimodality andgenerativeity.
We derive an upper bound of the negative log-likelihood of the environmental transition and use such an upper bound as the intrinsic reward for exploration.
Our method outperforms several state-of-the-art environment model-based exploration approaches.
arXiv Detail & Related papers (2020-10-17T09:54:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.