YOLO-Based Pipeline Monitoring in Challenging Visual Environments
- URL: http://arxiv.org/abs/2507.02967v1
- Date: Mon, 30 Jun 2025 14:47:30 GMT
- Title: YOLO-Based Pipeline Monitoring in Challenging Visual Environments
- Authors: Pragya Dhungana, Matteo Fresta, Niraj Tamrakar, Hariom Dhungana,
- Abstract summary: Condition monitoring subsea pipelines in low-visibility underwater environments poses significant challenges due to turbidity, light distortion, and image degradation.<n>Traditional visual-based inspection systems often fail to provide reliable data for mapping, object recognition, or defect detection in such conditions.<n>This study explores the integration of advanced artificial intelligence (AI) techniques to enhance image quality, detect pipeline structures, and support autonomous fault diagnosis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Condition monitoring subsea pipelines in low-visibility underwater environments poses significant challenges due to turbidity, light distortion, and image degradation. Traditional visual-based inspection systems often fail to provide reliable data for mapping, object recognition, or defect detection in such conditions. This study explores the integration of advanced artificial intelligence (AI) techniques to enhance image quality, detect pipeline structures, and support autonomous fault diagnosis. This study conducts a comparative analysis of two most robust versions of YOLOv8 and Yolov11 and their three variants tailored for image segmentation tasks in complex and low-visibility subsea environments. Using pipeline inspection datasets captured beneath the seabed, it evaluates model performance in accurately delineating target structures under challenging visual conditions. The results indicated that YOLOv11 outperformed YOLOv8 in overall performance.
Related papers
- Addressing Camera Sensors Faults in Vision-Based Navigation: Simulation and Dataset Development [41.94295877935867]
This study focuses on an interplanetary exploration mission scenario.<n>A comprehensive analysis of potential fault cases in camera sensors used within the VBN pipeline is presented.<n>A simulation framework is introduced to recreate faulty conditions in synthetically generated images, enabling a systematic and controlled reproduction of faulty data.<n>The resulting dataset of fault-injected images provides a valuable tool for training and testing AI-based fault detection algorithms.
arXiv Detail & Related papers (2025-07-03T13:23:22Z) - Data Augmentation and Resolution Enhancement using GANs and Diffusion Models for Tree Segmentation [49.13393683126712]
Urban forests play a key role in enhancing environmental quality and supporting biodiversity in cities.<n> accurately detecting trees is challenging due to complex landscapes and the variability in image resolution caused by different satellite sensors or UAV flight altitudes.<n>We propose a novel pipeline that integrates domain adaptation with GANs and Diffusion models to enhance the quality of low-resolution aerial images.
arXiv Detail & Related papers (2025-05-21T03:57:10Z) - Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments [57.59857784298534]
We propose an integrated pipeline that combines Visual Place Recognition (VPR), feature matching, and image segmentation on video-derived images.<n>This method enables robust identification of revisited areas, estimation of rigid transformations, and downstream analysis of ecosystem changes.
arXiv Detail & Related papers (2025-03-06T05:13:19Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - AssemAI: Interpretable Image-Based Anomaly Detection for Manufacturing Pipelines [0.0]
Anomaly detection in manufacturing pipelines remains a critical challenge, intensified by the complexity and variability of industrial environments.
This paper introduces AssemAI, an interpretable image-based anomaly detection system tailored for smart manufacturing pipelines.
arXiv Detail & Related papers (2024-08-05T01:50:09Z) - D-YOLO a robust framework for object detection in adverse weather conditions [0.0]
Adverse weather conditions including haze, snow and rain lead to decline in image qualities, which often causes a decline in performance for deep-learning based detection networks.
To better integrate image restoration and object detection tasks, we designed a double-route network with an attention feature fusion module.
We also proposed a subnetwork to provide haze-free features to the detection network. Specifically, our D-YOLO improves the performance of the detection network by minimizing the distance between the clear feature extraction subnetwork and detection network.
arXiv Detail & Related papers (2024-03-14T09:57:15Z) - Diffusion Model Based Visual Compensation Guidance and Visual Difference Analysis for No-Reference Image Quality Assessment [78.21609845377644]
We propose a novel class of state-of-the-art (SOTA) generative model, which exhibits the capability to model intricate relationships.<n>We devise a new diffusion restoration network that leverages the produced enhanced image and noise-containing images.<n>Two visual evaluation branches are designed to comprehensively analyze the obtained high-level feature information.
arXiv Detail & Related papers (2024-02-22T09:39:46Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - Underwater Object Classification and Detection: first results and open
challenges [1.1549572298362782]
This work reviews the problem of object detection in underwater environments.
We analyse and quantify the shortcomings of conventional state-of-the-art (SOTA) algorithms.
arXiv Detail & Related papers (2022-01-04T04:54:08Z) - A feature-supervised generative adversarial network for environmental
monitoring during hazy days [6.276954295407201]
This paper proposes a feature-supervised learning network based on generative adversarial networks (GAN) for environmental monitoring during days.
The proposed method has achieved better performance than current state-of-the-art methods on both synthetic datasets and real-world remote sensing images.
arXiv Detail & Related papers (2020-08-05T05:27:15Z) - Diagnosing the Environment Bias in Vision-and-Language Navigation [102.02103792590076]
Vision-and-Language Navigation (VLN) requires an agent to follow natural-language instructions, explore the given environments, and reach the desired target locations.
Recent works that study VLN observe a significant performance drop when tested on unseen environments, indicating that the neural agent models are highly biased towards training environments.
In this work, we design novel diagnosis experiments via environment re-splitting and feature replacement, looking into possible reasons for this environment bias.
arXiv Detail & Related papers (2020-05-06T19:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.