`For Argument's Sake, Show Me How to Harm Myself!': Jailbreaking LLMs in Suicide and Self-Harm Contexts
- URL: http://arxiv.org/abs/2507.02990v1
- Date: Tue, 01 Jul 2025 18:00:04 GMT
- Title: `For Argument's Sake, Show Me How to Harm Myself!': Jailbreaking LLMs in Suicide and Self-Harm Contexts
- Authors: Annika M Schoene, Cansu Canca,
- Abstract summary: We present two new test cases in mental health for (i) suicide and (ii) self-harm, using multi-step, prompt-level jailbreaking and bypass built-in content and safety filters.<n>We show that user intent is disregarded, leading to the generation of detailed harmful content and instructions that could cause real-world harm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in large language models (LLMs) have led to increasingly sophisticated safety protocols and features designed to prevent harmful, unethical, or unauthorized outputs. However, these guardrails remain susceptible to novel and creative forms of adversarial prompting, including manually generated test cases. In this work, we present two new test cases in mental health for (i) suicide and (ii) self-harm, using multi-step, prompt-level jailbreaking and bypass built-in content and safety filters. We show that user intent is disregarded, leading to the generation of detailed harmful content and instructions that could cause real-world harm. We conduct an empirical evaluation across six widely available LLMs, demonstrating the generalizability and reliability of the bypass. We assess these findings and the multilayered ethical tensions that they present for their implications on prompt-response filtering and context- and task-specific model development. We recommend a more comprehensive and systematic approach to AI safety and ethics while emphasizing the need for continuous adversarial testing in safety-critical AI deployments. We also argue that while certain clearly defined safety measures and guardrails can and must be implemented in LLMs, ensuring robust and comprehensive safety across all use cases and domains remains extremely challenging given the current technical maturity of general-purpose LLMs.
Related papers
- ROSE: Toward Reality-Oriented Safety Evaluation of Large Language Models [60.28667314609623]
Large Language Models (LLMs) are increasingly deployed as black-box components in real-world applications.<n>We propose Reality-Oriented Safety Evaluation (ROSE), a novel framework that uses multi-objective reinforcement learning to fine-tune an adversarial LLM.
arXiv Detail & Related papers (2025-06-17T10:55:17Z) - Beyond Jailbreaks: Revealing Stealthier and Broader LLM Security Risks Stemming from Alignment Failures [17.9033567125575]
Large language models (LLMs) are increasingly deployed in real-world applications, raising concerns about their security.<n>While jailbreak attacks highlight failures under overtly harmful queries, they overlook a critical risk: incorrectly answering harmless-looking inputs can be dangerous and cause real-world harm (Implicit Harm)<n>We systematically reformulate the LLM risk landscape through a structured quadrant perspective based on output factuality and input harmlessness, uncovering a high-risk region.
arXiv Detail & Related papers (2025-06-09T03:52:43Z) - Should LLM Safety Be More Than Refusing Harmful Instructions? [6.5137518437747]
This paper presents a systematic evaluation of Large Language Models' (LLMs) behavior on long-tail distributed (encrypted) texts.<n>We introduce a two-dimensional framework for assessing LLM safety.<n>We demonstrate that models that possess capabilities to decrypt ciphers may be susceptible to mismatched-generalization attacks.
arXiv Detail & Related papers (2025-06-03T05:00:12Z) - Security Concerns for Large Language Models: A Survey [3.175227858236288]
Large Language Models (LLMs) have caused a revolution in natural language processing, but their capabilities also introduce new security vulnerabilities.<n>We provide a comprehensive overview of the emerging security concerns around LLMs, categorizing threats into prompt injection and jailbreaking, adversarial attacks such as input perturbations and data poisoning, and worrisome risks inherent in autonomous LLM agents.<n>We conclude by emphasizing the importance of advancing robust, multi-layered security strategies to ensure LLMs are safe and beneficial.
arXiv Detail & Related papers (2025-05-24T22:22:43Z) - Why Not Act on What You Know? Unleashing Safety Potential of LLMs via Self-Aware Guard Enhancement [48.50995874445193]
Large Language Models (LLMs) have shown impressive capabilities across various tasks but remain vulnerable to meticulously crafted jailbreak attacks.<n>We propose SAGE (Self-Aware Guard Enhancement), a training-free defense strategy designed to align LLMs' strong safety discrimination performance with their relatively weaker safety generation ability.
arXiv Detail & Related papers (2025-05-17T15:54:52Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
The Global Challenge for Safe and Secure Large Language Models (LLMs) is a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO)
This paper introduces the Global Challenge for Safe and Secure Large Language Models (LLMs), a pioneering initiative organized by AI Singapore (AISG) and the CyberSG R&D Programme Office (CRPO) to foster the development of advanced defense mechanisms against automated jailbreaking attacks.
arXiv Detail & Related papers (2024-11-21T08:20:31Z) - LLMs know their vulnerabilities: Uncover Safety Gaps through Natural Distribution Shifts [88.96201324719205]
Safety concerns in large language models (LLMs) have gained significant attention due to their exposure to potentially harmful data during pre-training.<n>We identify a new safety vulnerability in LLMs, where seemingly benign prompts, semantically related to harmful content, can bypass safety mechanisms.<n>We introduce a novel attack method, textitActorBreaker, which identifies actors related to toxic prompts within pre-training distribution.
arXiv Detail & Related papers (2024-10-14T16:41:49Z) - Safe Inputs but Unsafe Output: Benchmarking Cross-modality Safety Alignment of Large Vision-Language Model [73.8765529028288]
We introduce a novel safety alignment challenge called Safe Inputs but Unsafe Output (SIUO) to evaluate cross-modality safety alignment.<n>To empirically investigate this problem, we developed the SIUO, a cross-modality benchmark encompassing 9 critical safety domains, such as self-harm, illegal activities, and privacy violations.<n>Our findings reveal substantial safety vulnerabilities in both closed- and open-source LVLMs, underscoring the inadequacy of current models to reliably interpret and respond to complex, real-world scenarios.
arXiv Detail & Related papers (2024-06-21T16:14:15Z) - Current state of LLM Risks and AI Guardrails [0.0]
Large language models (LLMs) have become increasingly sophisticated, leading to widespread deployment in sensitive applications where safety and reliability are paramount.
These risks necessitate the development of "guardrails" to align LLMs with desired behaviors and mitigate potential harm.
This work explores the risks associated with deploying LLMs and evaluates current approaches to implementing guardrails and model alignment techniques.
arXiv Detail & Related papers (2024-06-16T22:04:10Z) - ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming [64.86326523181553]
ALERT is a large-scale benchmark to assess safety based on a novel fine-grained risk taxonomy.
It aims to identify vulnerabilities, inform improvements, and enhance the overall safety of the language models.
arXiv Detail & Related papers (2024-04-06T15:01:47Z) - The Ethics of Interaction: Mitigating Security Threats in LLMs [1.407080246204282]
The paper delves into the nuanced ethical repercussions of such security threats on society and individual privacy.
We scrutinize five major threats--prompt injection, jailbreaking, Personal Identifiable Information (PII) exposure, sexually explicit content, and hate-based content--to assess their critical ethical consequences and the urgency they create for robust defensive strategies.
arXiv Detail & Related papers (2024-01-22T17:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.