Detection of Rail Line Track and Human Beings Near the Track to Avoid Accidents
- URL: http://arxiv.org/abs/2507.03040v1
- Date: Thu, 03 Jul 2025 06:53:27 GMT
- Title: Detection of Rail Line Track and Human Beings Near the Track to Avoid Accidents
- Authors: Mehrab Hosain, Rajiv Kapoor,
- Abstract summary: This paper presents an approach for rail line detection and the identification of human beings in proximity to the track.<n>The technique incorporates real-time video data to identify railway tracks with impressive accuracy.<n>It recognizes nearby moving objects within a one-meter range, specifically targeting the identification of humans.
- Score: 1.795561427808824
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an approach for rail line detection and the identification of human beings in proximity to the track, utilizing the YOLOv5 deep learning model to mitigate potential accidents. The technique incorporates real-time video data to identify railway tracks with impressive accuracy and recognizes nearby moving objects within a one-meter range, specifically targeting the identification of humans. This system aims to enhance safety measures in railway environments by providing real-time alerts for any detected human presence close to the track. The integration of a functionality to identify objects at a longer distance further fortifies the preventative capabilities of the system. With a precise focus on real-time object detection, this method is poised to deliver significant contributions to the existing technologies in railway safety. The effectiveness of the proposed method is demonstrated through a comprehensive evaluation, yielding a remarkable improvement in accuracy over existing methods. These results underscore the potential of this approach to revolutionize safety measures in railway environments, providing a substantial contribution to accident prevention strategies.
Related papers
- A Multi-Loss Strategy for Vehicle Trajectory Prediction: Combining Off-Road, Diversity, and Directional Consistency Losses [68.68514648185828]
Trajectory prediction is essential for the safety and efficiency of planning in autonomous vehicles.<n>Current models often fail to fully capture complex traffic rules and the complete range of potential vehicle movements.<n>This study introduces three novel loss functions: Offroad Loss, Direction Consistency Error, and Diversity Loss.
arXiv Detail & Related papers (2024-11-29T14:47:08Z) - Edge-Assisted ML-Aided Uncertainty-Aware Vehicle Collision Avoidance at Urban Intersections [12.812518632907771]
We present a novel framework that detects preemptively collisions at urban crossroads.
We exploit the Multi-access Edge Computing platform of 5G networks.
arXiv Detail & Related papers (2024-04-22T18:45:40Z) - Intelligent Railroad Grade Crossing: Leveraging Semantic Segmentation and Object Detection for Enhanced Safety [0.11999555634662631]
Crashes and delays at Railroad Highway Grade Crossings (RHGC) pose significant safety concerns for the U.S. Federal Railroad Administration (FRA)
This study introduces an intelligent system that leverages machine learning and computer vision techniques to enhance safety at RHGC.
arXiv Detail & Related papers (2024-03-17T02:15:15Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
This paper proposes a radial threat estimation method for energy pipelines based on distributed optical fiber sensing technology.
We introduce a continuous multi-view and multi-domain feature fusion methodology to extract comprehensive signal features.
We incorporate the concept of transfer learning through a pre-trained model, enhancing both recognition accuracy and training efficiency.
arXiv Detail & Related papers (2023-12-18T12:37:35Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Improving Online Lane Graph Extraction by Object-Lane Clustering [106.71926896061686]
We propose an architecture and loss formulation to improve the accuracy of local lane graph estimates.
The proposed method learns to assign the objects to centerlines by considering the centerlines as cluster centers.
We show that our method can achieve significant performance improvements by using the outputs of existing 3D object detection methods.
arXiv Detail & Related papers (2023-07-20T15:21:28Z) - Cooperative Saliency-based Obstacle Detection and AR Rendering for
Increased Situational Awareness [3.010893618491329]
We propose a saliency-based distributed, cooperative obstacle detection and rendering scheme.
The proposed method provides favorable results and features compared to other recent and relevant approaches.
arXiv Detail & Related papers (2023-02-02T07:32:13Z) - Perspective Aware Road Obstacle Detection [104.57322421897769]
We show that road obstacle detection techniques ignore the fact that, in practice, the apparent size of the obstacles decreases as their distance to the vehicle increases.
We leverage this by computing a scale map encoding the apparent size of a hypothetical object at every image location.
We then leverage this perspective map to generate training data by injecting onto the road synthetic objects whose size corresponds to the perspective foreshortening.
arXiv Detail & Related papers (2022-10-04T17:48:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.