CPKD: Clinical Prior Knowledge-Constrained Diffusion Models for Surgical Phase Recognition in Endoscopic Submucosal Dissection
- URL: http://arxiv.org/abs/2507.03295v1
- Date: Fri, 04 Jul 2025 04:54:47 GMT
- Title: CPKD: Clinical Prior Knowledge-Constrained Diffusion Models for Surgical Phase Recognition in Endoscopic Submucosal Dissection
- Authors: Xiangning Zhang, Jinnan Chen, Qingwei Zhang, Yaqi Wang, Chengfeng Zhou, Xiaobo Li, Dahong Qian,
- Abstract summary: We present Clinical Prior Knowledge-Constrained Diffusion (CPKD), a novel generative framework that reimagines phase recognition through denoising diffusion principles.<n>Our proposed CPKD achieves superior or comparable performance to state-of-the-art approaches.
- Score: 6.812360406181253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gastrointestinal malignancies constitute a leading cause of cancer-related mortality worldwide, with advanced-stage prognosis remaining particularly dismal. Originating as a groundbreaking technique for early gastric cancer treatment, Endoscopic Submucosal Dissection has evolved into a versatile intervention for diverse gastrointestinal lesions. While computer-assisted systems significantly enhance procedural precision and safety in ESD, their clinical adoption faces a critical bottleneck: reliable surgical phase recognition within complex endoscopic workflows. Current state-of-the-art approaches predominantly rely on multi-stage refinement architectures that iteratively optimize temporal predictions. In this paper, we present Clinical Prior Knowledge-Constrained Diffusion (CPKD), a novel generative framework that reimagines phase recognition through denoising diffusion principles while preserving the core iterative refinement philosophy. This architecture progressively reconstructs phase sequences starting from random noise and conditioned on visual-temporal features. To better capture three domain-specific characteristics, including positional priors, boundary ambiguity, and relation dependency, we design a conditional masking strategy. Furthermore, we incorporate clinical prior knowledge into the model training to improve its ability to correct phase logical errors. Comprehensive evaluations on ESD820, Cholec80, and external multi-center demonstrate that our proposed CPKD achieves superior or comparable performance to state-of-the-art approaches, validating the effectiveness of diffusion-based generative paradigms for surgical phase recognition.
Related papers
- Benchmarking and Enhancing Surgical Phase Recognition Models for Robotic-Assisted Esophagectomy [1.0807134580166777]
Robotic-assisted minimally invasive esophagectomy (RAMIE) is a recognized treatment for esophageal cancer.<n>Our goal is to leverage deep learning for surgical phase recognition in RAMIE to provide intraoperative support to surgeons.<n>To more effectively capture the temporal dynamics of this complex procedure, we developed a novel deep learning model featuring an encoder-decoder structure with causal hierarchical attention.
arXiv Detail & Related papers (2024-12-05T10:23:16Z) - SPRMamba: Surgical Phase Recognition for Endoscopic Submucosal Dissection with Mamba [6.531066045206769]
We present SPRMamba, a novel framework for real-time surgical phase recognition.<n>It integrates a Mamba architecture with a Scaled Residual TranMamba block to synergize temporal modeling and localized detail extraction.<n>It achieves state-of-the-art performance (87.64% accuracy on ESD385, +1.0% over prior methods) demonstrating robust generalizability across surgical procedures.
arXiv Detail & Related papers (2024-09-18T16:26:56Z) - CIResDiff: A Clinically-Informed Residual Diffusion Model for Predicting Idiopathic Pulmonary Fibrosis Progression [38.14873567230233]
Idiopathic Pulmonary Fibrosis (IPF) significantly correlates with higher patient mortality rates.
Current clinical criteria define disease progression requiring two CT scans with a one-year interval.
We develop a novel diffusion model to accurately predict the progression of IPF by generating patient's follow-up CT scan.
arXiv Detail & Related papers (2024-08-01T22:01:42Z) - Safe Deep RL for Intraoperative Planning of Pedicle Screw Placement [61.28459114068828]
We propose an intraoperative planning approach for robotic spine surgery that leverages real-time observation for drill path planning based on Safe Deep Reinforcement Learning (DRL)
Our approach was capable of achieving 90% bone penetration with respect to the gold standard (GS) drill planning.
arXiv Detail & Related papers (2023-05-09T11:42:53Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - DeepPrognosis: Preoperative Prediction of Pancreatic Cancer Survival and
Surgical Margin via Contrast-Enhanced CT Imaging [26.162788846435365]
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and carries a dismal prognosis.
We propose a novel deep neural network for the survival prediction of resectable PDAC patients, named as 3D Contrast-Enhanced Convolutional Long Short-Term Memory network(CE-ConvLSTM)
We present a multi-task CNN to accomplish both tasks of outcome and margin prediction where the network benefits from learning the tumor resection margin related features to improve survival prediction.
arXiv Detail & Related papers (2020-08-26T22:51:24Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z) - TeCNO: Surgical Phase Recognition with Multi-Stage Temporal
Convolutional Networks [43.95869213955351]
We propose a Multi-Stage Temporal Convolutional Network (MS-TCN) that performs hierarchical prediction refinement for surgical phase recognition.
Our method is thoroughly evaluated on two datasets of laparoscopic cholecystectomy videos with and without the use of additional surgical tool information.
arXiv Detail & Related papers (2020-03-24T10:12:30Z) - Detecting Pancreatic Ductal Adenocarcinoma in Multi-phase CT Scans via
Alignment Ensemble [77.5625174267105]
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers among the population.
Multiple phases provide more information than single phase, but they are unaligned and inhomogeneous in texture.
We suggest an ensemble of all these alignments as a promising way to boost the performance of PDAC detection.
arXiv Detail & Related papers (2020-03-18T19:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.