DeepPrognosis: Preoperative Prediction of Pancreatic Cancer Survival and
Surgical Margin via Contrast-Enhanced CT Imaging
- URL: http://arxiv.org/abs/2008.11853v1
- Date: Wed, 26 Aug 2020 22:51:24 GMT
- Title: DeepPrognosis: Preoperative Prediction of Pancreatic Cancer Survival and
Surgical Margin via Contrast-Enhanced CT Imaging
- Authors: Jiawen Yao, Yu Shi, Le Lu, Jing Xiao, Ling Zhang
- Abstract summary: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and carries a dismal prognosis.
We propose a novel deep neural network for the survival prediction of resectable PDAC patients, named as 3D Contrast-Enhanced Convolutional Long Short-Term Memory network(CE-ConvLSTM)
We present a multi-task CNN to accomplish both tasks of outcome and margin prediction where the network benefits from learning the tumor resection margin related features to improve survival prediction.
- Score: 26.162788846435365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and
carries a dismal prognosis. Surgery remains the best chance of a potential cure
for patients who are eligible for initial resection of PDAC. However, outcomes
vary significantly even among the resected patients of the same stage and
received similar treatments. Accurate preoperative prognosis of resectable
PDACs for personalized treatment is thus highly desired. Nevertheless, there
are no automated methods yet to fully exploit the contrast-enhanced computed
tomography (CE-CT) imaging for PDAC. Tumor attenuation changes across different
CT phases can reflect the tumor internal stromal fractions and vascularization
of individual tumors that may impact the clinical outcomes. In this work, we
propose a novel deep neural network for the survival prediction of resectable
PDAC patients, named as 3D Contrast-Enhanced Convolutional Long Short-Term
Memory network(CE-ConvLSTM), which can derive the tumor attenuation signatures
or patterns from CE-CT imaging studies. We present a multi-task CNN to
accomplish both tasks of outcome and margin prediction where the network
benefits from learning the tumor resection margin related features to improve
survival prediction. The proposed framework can improve the prediction
performances compared with existing state-of-the-art survival analysis
approaches. The tumor signature built from our model has evidently added values
to be combined with the existing clinical staging system.
Related papers
- Radiomics-guided Multimodal Self-attention Network for Predicting Pathological Complete Response in Breast MRI [3.6852491526879687]
This study presents a model that predicts pCR in breast cancer patients using dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and apparent diffusion coefficient (ADC) maps.
Our approach extracts features from both DCE MRI and ADC using an encoder with a self-attention mechanism, leveraging radiomics to guide feature extraction from tumor-related regions.
arXiv Detail & Related papers (2024-06-05T04:49:55Z) - Optimizing Synthetic Correlated Diffusion Imaging for Breast Cancer Tumour Delineation [71.91773485443125]
We show that the best AUC is achieved by the CDI$s$ - optimized modality, outperforming the best gold-standard modality by 0.0044.
Notably, the optimized CDI$s$ modality also achieves AUC values over 0.02 higher than the Unoptimized CDI$s$ value.
arXiv Detail & Related papers (2024-05-13T16:07:58Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Segmentation-based Assessment of Tumor-Vessel Involvement for Surgical
Resectability Prediction of Pancreatic Ductal Adenocarcinoma [1.880228463170355]
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options.
This research proposes a workflow and deep learning-based segmentation models to automatically assess tumor-vessel involvement.
arXiv Detail & Related papers (2023-10-01T10:39:38Z) - Improved Prognostic Prediction of Pancreatic Cancer Using Multi-Phase CT
by Integrating Neural Distance and Texture-Aware Transformer [37.55853672333369]
This paper proposes a novel learnable neural distance that describes the precise relationship between the tumor and vessels in CT images of different patients.
The developed risk marker was the strongest predictor of overall survival among preoperative factors.
arXiv Detail & Related papers (2023-08-01T12:46:02Z) - Predicting Thrombectomy Recanalization from CT Imaging Using Deep Learning Models [4.780704816027884]
We proposed a fully automated prediction of a patient's recanalization score using pre-treatment CT and CTA imaging.
Our top model achieved an average cross-validated ROC-AUC of 77.33 $pm$ 3.9%.
arXiv Detail & Related papers (2023-02-08T15:41:21Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
We investigate enhancing clinical support for breast cancer with deep learning models.
We leverage a volumetric convolutional neural network to learn deep radiomic features from a pre-treatment cohort.
We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction.
arXiv Detail & Related papers (2022-11-10T03:02:12Z) - Automated Segmentation and Recurrence Risk Prediction of Surgically
Resected Lung Tumors with Adaptive Convolutional Neural Networks [3.5413688566798096]
Lung cancer is the leading cause of cancer related mortality by a significant margin.
In this paper, we explore the use of convolutional neural networks (CNNs) for the segmentation and recurrence risk prediction of lung tumors.
To the best of our knowledge, it is the first fully automated segmentation and recurrence risk prediction system.
arXiv Detail & Related papers (2022-09-17T23:06:22Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
We develop a deep learning framework that can accurately predict and visualize the progression of osteolytic bone lesions.
It will assist in planning and evaluating treatment strategies to prevent skeletal related events (SREs) in breast cancer patients.
arXiv Detail & Related papers (2022-03-20T21:00:10Z) - Detecting Pancreatic Ductal Adenocarcinoma in Multi-phase CT Scans via
Alignment Ensemble [77.5625174267105]
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers among the population.
Multiple phases provide more information than single phase, but they are unaligned and inhomogeneous in texture.
We suggest an ensemble of all these alignments as a promising way to boost the performance of PDAC detection.
arXiv Detail & Related papers (2020-03-18T19:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.