Artificial intelligence in drug discovery: A comprehensive review with a case study on hyperuricemia, gout arthritis, and hyperuricemic nephropathy
- URL: http://arxiv.org/abs/2507.03407v1
- Date: Fri, 04 Jul 2025 09:14:56 GMT
- Title: Artificial intelligence in drug discovery: A comprehensive review with a case study on hyperuricemia, gout arthritis, and hyperuricemic nephropathy
- Authors: Junwei Su, Cheng Xin, Ao Shang, Shan Wu, Zhenzhen Xie, Ruogu Xiong, Xiaoyu Xu, Cheng Zhang, Guang Chen, Yau-Tuen Chan, Guoyi Tang, Ning Wang, Yong Xu, Yibin Feng,
- Abstract summary: This paper systematically reviews recent advances in artificial intelligence (AI) and machine learning (ML) across the entire drug discovery pipeline.<n>Due to the inherent complexity, escalating costs, prolonged timelines, and high failure rates of traditional drug discovery methods, there is a critical need to understand how AI/ML can be effectively integrated throughout the full process.
- Score: 18.76414044151594
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper systematically reviews recent advances in artificial intelligence (AI), with a particular focus on machine learning (ML), across the entire drug discovery pipeline. Due to the inherent complexity, escalating costs, prolonged timelines, and high failure rates of traditional drug discovery methods, there is a critical need to comprehensively understand how AI/ML can be effectively integrated throughout the full process. Currently available literature reviews often narrowly focus on specific phases or methodologies, neglecting the dependence between key stages such as target identification, hit screening, and lead optimization. To bridge this gap, our review provides a detailed and holistic analysis of AI/ML applications across these core phases, highlighting significant methodological advances and their impacts at each stage. We further illustrate the practical impact of these techniques through an in-depth case study focused on hyperuricemia, gout arthritis, and hyperuricemic nephropathy, highlighting real-world successes in molecular target identification and therapeutic candidate discovery. Additionally, we discuss significant challenges facing AI/ML in drug discovery and outline promising future research directions. Ultimately, this review serves as an essential orientation for researchers aiming to leverage AI/ML to overcome existing bottlenecks and accelerate drug discovery.
Related papers
- Graph-structured Small Molecule Drug Discovery Through Deep Learning: Progress, Challenges, and Opportunities [37.84367643280023]
Small molecule drugs are widely used to treat various diseases, making them a critical component of drug discovery.<n>Deep learning (DL) techniques have achieved excellent performance in prediction accuracy, speed, and complex molecular relationship.<n>This paper systematically summarize and generalize the recent key tasks and representative techniques in graph-structured small molecule drug discovery.
arXiv Detail & Related papers (2025-02-13T05:24:52Z) - Survey on AI-Generated Media Detection: From Non-MLLM to MLLM [51.91311158085973]
Methods for detecting AI-generated media have evolved rapidly.<n>General-purpose detectors based on MLLMs integrate authenticity verification, explainability, and localization capabilities.<n>Ethical and security considerations have emerged as critical global concerns.
arXiv Detail & Related papers (2025-02-07T12:18:20Z) - Decoding Drug Discovery: Exploring A-to-Z In silico Methods for Beginners [4.08908337437878]
The main goal of this work is to review in silico methods used in the drug development process.<n>This article thoroughly discusses A-to-Z in silico techniques, which are essential for identifying the targets of bioactive compounds.
arXiv Detail & Related papers (2024-12-15T10:02:38Z) - A Comprehensive Guide to Enhancing Antibiotic Discovery Using Machine Learning Derived Bio-computation [0.7739316058960921]
We provide an overview of different AI and ML tools that can be used to streamline and accelerate the drug discovery process.
We address limitations in AI-based drug discovery and development, including the scarcity of high-quality data.
We discuss how AI and ML can expedite the discovery of new antibiotics to combat the problem of worldwide antimicrobial resistance.
arXiv Detail & Related papers (2024-11-08T23:04:42Z) - Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
The integration of Large Language Models (LLMs) into the drug discovery and development field marks a significant paradigm shift.
We investigate how these advanced computational models can uncover target-disease linkage, interpret complex biomedical data, enhance drug molecule design, predict drug efficacy and safety profiles, and facilitate clinical trial processes.
arXiv Detail & Related papers (2024-09-06T02:03:38Z) - Artificial Intelligence in Gastrointestinal Bleeding Analysis for Video Capsule Endoscopy: Insights, Innovations, and Prospects (2008-2023) [0.7119794757408745]
An estimated 300,000 annual deaths worldwide are associated with gastrointestinal (GI) bleeding.
Video Capsule Endoscopy (VCE) has marked a significant advancement, offering a comprehensive, non-invasive visualization of the digestive tract.
Despite its benefits, the efficacy of VCE is hindered by diagnostic challenges, including time-consuming analysis and susceptibility to human error.
This review assesses the current state of Machine Learning (ML) methodologies in bleeding detection, highlighting their effectiveness, challenges, and prospective directions.
arXiv Detail & Related papers (2024-09-01T07:13:28Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [54.98321887435557]
This paper presents a suite of 23 meticulously curated AI-ready datasets covering multi-modal input features and 8 crucial prediction challenges in clinical trial design.<n>We provide basic validation methods for each task to ensure the datasets' usability and reliability.<n>We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
A major challenge for AI-driven drug discovery is the scarcity of high-quality data.
We develop a formula enhanced mul-ti-task learning (PEMAL) method that predicts four key parameters of pharmacokinetics simultaneously.
Our experiments reveal that PEMAL significantly lowers the data demand, compared to typical Graph Neural Networks.
arXiv Detail & Related papers (2024-04-16T07:42:55Z) - Multiscale Topology in Interactomic Network: From Transcriptome to
Antiaddiction Drug Repurposing [0.3683202928838613]
The escalating drug addiction crisis in the United States underscores the urgent need for innovative therapeutic strategies.
This study embarked on an innovative and rigorous strategy to unearth potential drug repurposing candidates for opioid and cocaine addiction treatment.
arXiv Detail & Related papers (2023-12-03T04:01:38Z) - ImDrug: A Benchmark for Deep Imbalanced Learning in AI-aided Drug
Discovery [79.08833067391093]
Real-world pharmaceutical datasets often exhibit highly imbalanced distribution.
We introduce ImDrug, a benchmark with an open-source Python library which consists of 4 imbalance settings, 11 AI-ready datasets, 54 learning tasks and 16 baseline algorithms tailored for imbalanced learning.
It provides an accessible and customizable testbed for problems and solutions spanning a broad spectrum of the drug discovery pipeline.
arXiv Detail & Related papers (2022-09-16T13:35:57Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.