Nonequilibrium thermometry via an ensemble of initially correlated qubits
- URL: http://arxiv.org/abs/2507.03471v1
- Date: Fri, 04 Jul 2025 10:49:39 GMT
- Title: Nonequilibrium thermometry via an ensemble of initially correlated qubits
- Authors: Enrico Trombetti, Marco Pezzutto, Marco Malitesta, Stefano Gherardini,
- Abstract summary: An ensemble of qubits, acting as temperature probes, is weakly coupled to a macroscopic thermal bath.<n>We observe a peak in the Quantum Fisher Information (QFI) during the transient of the thermalization.<n>The influence of quantum correlations emerges as a central feature of this work.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate an nonequilibrium quantum thermometry protocol in which an ensemble of qubits, acting as temperature probes, is weakly coupled to a macroscopic thermal bath. The temperature of the bath, the parameter of interest, is encoded in the dissipator of a Markovian thermalization process. For some relevant initial states, we observe a peak in the Quantum Fisher Information (QFI) during the transient of the thermalization, indicating enhanced sensitivity in early-time dynamics. This effect becomes more pronounced at higher bath temperatures and is further enhanced when the qubits' initial state has a larger ground-state population. Our analysis shows that both local coherence in the probes' initial state and initial correlations among the probes contribute to the amplification of the peak in the QFI, thus improving the precision of the temperature estimation. The influence of quantum correlations emerges as a central feature of this work. Although the dynamics does not permit superlinear scaling of the QFI with the number of probes, we identify the most effective initial states for designing high-precision quantum sensors within this setting. We also provide concrete guidelines for experimental implementations.
Related papers
- Probing the Limits of Dispersive Quantum Thermometry with a Nonlinear Mach-Zehnder-Based Quantum Simulator [0.0]
Temperature estimation, known as thermometry, is a critical sensing task for physical systems operating in the quantum regime.<n>In this work, we estimate the unknown temperature of a collection of identical and independent two-level atoms dispersively probed by a single-mode quantized electromagnetic field.<n>We propose and implement a quantum thermometer based on a nonlinear Mach-Zehnder interferometer, which we realize through quantum digital simulation.
arXiv Detail & Related papers (2025-07-06T05:15:41Z) - Enhancing Gaussian quantum metrology with position-momentum correlations [0.0]
We employ a correlated Gaussian wave packet as a probe to examine the dynamics of Quantum Fisher Information (QFI) and purity based on PM correlations.<n>In the low-temperature regime, we find an improvement in the thermometry of the surrounding environment when the original system exhibits a non-null initial correlation.
arXiv Detail & Related papers (2024-08-23T13:34:05Z) - The role of initial system-environment correlations in the accuracies of parameters within spin-spin model [0.0]
We investigate the effect of initial system-environment correlations to improve the estimation of environment parameters.
In the temperature estimation case, our results are promising as one can improve the precision of the estimates by orders of magnitude.
In the case of coupling strength, interestingly the accuracy was found to be continuously increasing in both with and without correlations cases.
arXiv Detail & Related papers (2024-07-04T02:25:51Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Coherence-enhanced single-qubit thermometry out of equilibrium [0.0]
We consider a finite-dimensional quantum system, employed as a quantum thermometer, in contact with a thermal inducing Markov bathian thermalization dynamics.
We prove that the sensitivity of the thermometer, quantified by the quantum Fisher information, is enhanced by the quantum coherence in its initial state.
arXiv Detail & Related papers (2024-05-23T11:11:01Z) - Quantum Fisher Information for Different States and Processes in Quantum
Chaotic Systems [77.34726150561087]
We compute the quantum Fisher information (QFI) for both an energy eigenstate and a thermal density matrix.
We compare our results with earlier results for a local unitary transformation.
arXiv Detail & Related papers (2023-04-04T09:28:19Z) - Universal cooling dynamics toward a quantum critical point [0.0]
We investigate the loss of adiabaticity when cooling a many-body quantum system from an initial thermal state toward a quantum critical point.
The excitation density, which quantifies the degree of adiabaticity of the dynamics, is found to obey scaling laws in the cooling velocity.
arXiv Detail & Related papers (2022-04-15T18:00:12Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.