Enhancing Uncertainty Quantification for Runtime Safety Assurance Using Causal Risk Analysis and Operational Design Domain
- URL: http://arxiv.org/abs/2507.03515v1
- Date: Fri, 04 Jul 2025 12:12:32 GMT
- Title: Enhancing Uncertainty Quantification for Runtime Safety Assurance Using Causal Risk Analysis and Operational Design Domain
- Authors: Radouane Bouchekir, Michell Guzman Cancimance,
- Abstract summary: We propose an enhancement of traditional uncertainty quantification by explicitly incorporating environmental conditions.<n>We leverage Hazard Analysis and Risk Assessment (HARA) and fault tree modeling to identify critical operational conditions affecting system functionality.<n>At runtime, this BN is instantiated using real-time environmental observations to infer a probabilistic distribution over the safety estimation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensuring the runtime safety of autonomous systems remains challenging due to deep learning components' inherent uncertainty and their sensitivity to environmental changes. In this paper, we propose an enhancement of traditional uncertainty quantification by explicitly incorporating environmental conditions using risk-based causal analysis. We leverage Hazard Analysis and Risk Assessment (HARA) and fault tree modeling to identify critical operational conditions affecting system functionality. These conditions, together with uncertainties from the data and model, are integrated into a unified Bayesian Network (BN). At runtime, this BN is instantiated using real-time environmental observations to infer a probabilistic distribution over the safety estimation. This distribution enables the computation of both expected performance and its associated variance, providing a dynamic and context-aware measure of uncertainty. We demonstrate our approach through a case study of the Object Detection (OD) component in an Automated Valet Parking (AVP).
Related papers
- Comparing Normalizing Flows with Kernel Density Estimation in Estimating Risk of Automated Driving Systems [1.0533738606966752]
This paper considers the use of Normalizing Flows (NF) for estimating the Probability Density Function (PDF) of the parameters.<n> NF are a class of generative models that transform a simple base distribution into a complex one using a sequence of invertible and differentiable mappings.<n>We demonstrate the effectiveness of NF in quantifying risk and risk uncertainty of an ADS, comparing its performance with Kernel Density Estimation (KDE)
arXiv Detail & Related papers (2025-07-30T07:16:59Z) - RiskNet: Interaction-Aware Risk Forecasting for Autonomous Driving in Long-Tail Scenarios [6.024186631622774]
RiskNet is an interaction-aware risk forecasting framework for autonomous vehicles.<n>It integrates deterministic risk modeling with probabilistic behavior prediction for comprehensive risk assessment.<n>It supports real-time, scenario-adaptive risk forecasting and demonstrates strong generalization across uncertain driving environments.
arXiv Detail & Related papers (2025-04-22T02:36:54Z) - Probabilistic Modeling of Disparity Uncertainty for Robust and Efficient Stereo Matching [61.73532883992135]
We propose a new uncertainty-aware stereo matching framework.<n>We adopt Bayes risk as the measurement of uncertainty and use it to separately estimate data and model uncertainty.
arXiv Detail & Related papers (2024-12-24T23:28:20Z) - Risk-Averse Certification of Bayesian Neural Networks [70.44969603471903]
We propose a Risk-Averse Certification framework for Bayesian neural networks called RAC-BNN.<n>Our method leverages sampling and optimisation to compute a sound approximation of the output set of a BNN.<n>We validate RAC-BNN on a range of regression and classification benchmarks and compare its performance with a state-of-the-art method.
arXiv Detail & Related papers (2024-11-29T14:22:51Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.<n>Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.<n>However, the deployment of these agents in physical environments presents significant safety challenges.<n>This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Investigating Robustness in Cyber-Physical Systems: Specification-Centric Analysis in the face of System Deviations [8.8690305802668]
A critical attribute of cyber-physical systems (CPS) is robustness, denoting its capacity to operate safely.
This paper proposes a novel specification-based robustness, which characterizes the effectiveness of a controller in meeting a specified system requirement.
We present an innovative two-layer simulation-based analysis framework designed to identify subtle robustness violations.
arXiv Detail & Related papers (2023-11-13T16:44:43Z) - Safety Margins for Reinforcement Learning [53.10194953873209]
We show how to leverage proxy criticality metrics to generate safety margins.
We evaluate our approach on learned policies from APE-X and A3C within an Atari environment.
arXiv Detail & Related papers (2023-07-25T16:49:54Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
Safety assurance cases (SACs) can be challenging to maintain during system evolution.
We propose a solution that leverages software traceability to connect relevant system artifacts to safety analysis models.
We elicit design rationales for system changes to help safety stakeholders analyze the impact of system changes on safety.
arXiv Detail & Related papers (2023-07-14T16:03:27Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Context-Aware Safe Reinforcement Learning for Non-Stationary
Environments [24.75527261989899]
Safety is a critical concern when deploying reinforcement learning agents for realistic tasks.
We propose the context-aware safe reinforcement learning (CASRL) method to realize safe adaptation in non-stationary environments.
Results show that the proposed algorithm significantly outperforms existing baselines in terms of safety and robustness.
arXiv Detail & Related papers (2021-01-02T23:52:22Z) - Predictive Capability Maturity Quantification using Bayesian Network [0.0]
In nuclear engineering, modeling and simulations (M&Ss) are widely applied to support risk-informed safety analysis.
Due to data gaps, validation becomes a decision-making process under uncertainties.
This paper suggests a framework "Predictive Capability Maturity Quantification using Bayesian network (PCMQBN)" as a quantified framework for assessing simulation adequacy.
arXiv Detail & Related papers (2020-08-31T17:09:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.