Benchmarking Vector, Graph and Hybrid Retrieval Augmented Generation (RAG) Pipelines for Open Radio Access Networks (ORAN)
- URL: http://arxiv.org/abs/2507.03608v1
- Date: Fri, 04 Jul 2025 14:31:30 GMT
- Title: Benchmarking Vector, Graph and Hybrid Retrieval Augmented Generation (RAG) Pipelines for Open Radio Access Networks (ORAN)
- Authors: Sarat Ahmad, Zeinab Nezami, Maryam Hafeez, Syed Ali Raza Zaidi,
- Abstract summary: Large Language Models (LLMs) can be specialized to generate xApps and rApps by leveraging specifications and API definitions from the RAN Intelligent Controller (RIC) platform.<n>Retrieval-Augmented Generation (RAG) offers a practical alternative through in-context learning, enabling domain adaptation without full retraining.<n>In this study, we conduct a comparative evaluation of Vector RAG, GraphRAG, and Hybrid GraphRAG using ORAN specifications.
- Score: 0.3999851878220877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI (GenAI) is expected to play a pivotal role in enabling autonomous optimization in future wireless networks. Within the ORAN architecture, Large Language Models (LLMs) can be specialized to generate xApps and rApps by leveraging specifications and API definitions from the RAN Intelligent Controller (RIC) platform. However, fine-tuning base LLMs for telecom-specific tasks remains expensive and resource-intensive. Retrieval-Augmented Generation (RAG) offers a practical alternative through in-context learning, enabling domain adaptation without full retraining. While traditional RAG systems rely on vector-based retrieval, emerging variants such as GraphRAG and Hybrid GraphRAG incorporate knowledge graphs or dual retrieval strategies to support multi-hop reasoning and improve factual grounding. Despite their promise, these methods lack systematic, metric-driven evaluations, particularly in high-stakes domains such as ORAN. In this study, we conduct a comparative evaluation of Vector RAG, GraphRAG, and Hybrid GraphRAG using ORAN specifications. We assess performance across varying question complexities using established generation metrics: faithfulness, answer relevance, context relevance, and factual correctness. Results show that both GraphRAG and Hybrid GraphRAG outperform traditional RAG. Hybrid GraphRAG improves factual correctness by 8%, while GraphRAG improves context relevance by 7%.
Related papers
- Graph-R1: Towards Agentic GraphRAG Framework via End-to-end Reinforcement Learning [20.05893083101089]
Graph-R1 is an agentic GraphRAG framework via end-to-end reinforcement learning (RL)<n>It introduces lightweight knowledge hypergraph construction, models retrieval as a multi-turn agent-environment interaction.<n>Experiments on standard RAG datasets show that Graph-R1 outperforms traditional GraphRAG and RL-enhanced RAG methods in reasoning accuracy, retrieval efficiency, and generation quality.
arXiv Detail & Related papers (2025-07-29T15:01:26Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - When to use Graphs in RAG: A Comprehensive Analysis for Graph Retrieval-Augmented Generation [25.508719115522645]
Graph retrieval-augmented generation (GraphRAG) has emerged as a powerful paradigm for enhancing large language models (LLMs) with external knowledge.<n>Recent studies report that GraphRAG frequently underperforms vanilla RAG on many real-world tasks.<n>This raises a critical question: Is GraphRAG really effective, and in which scenarios do graph structures provide measurable benefits for RAG systems?
arXiv Detail & Related papers (2025-06-06T02:37:47Z) - Align-GRAG: Reasoning-Guided Dual Alignment for Graph Retrieval-Augmented Generation [75.9865035064794]
Large language models (LLMs) have demonstrated remarkable capabilities, but still struggle with issues like hallucinations and outdated information.<n>Retrieval-augmented generation (RAG) addresses these issues by grounding LLM outputs in external knowledge with an Information Retrieval (IR) system.<n>We propose Align-GRAG, a novel reasoning-guided dual alignment framework in post-retrieval phrase.
arXiv Detail & Related papers (2025-05-22T05:15:27Z) - HyperGraphRAG: Retrieval-Augmented Generation via Hypergraph-Structured Knowledge Representation [21.291102413159752]
We propose HyperGraphRAG, a novel graph-based RAG method that represents n-ary relational facts via hyperedges.<n> Experiments across medicine, agriculture, computer science, and law demonstrate that HyperGraphRAG outperforms both standard RAG and previous graph-based RAG methods in answer accuracy, retrieval efficiency, and generation quality.
arXiv Detail & Related papers (2025-03-27T10:01:16Z) - RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs [58.10503898336799]
We introduce the RAG-on-Graphs Library (RGL), a modular framework that seamlessly integrates the complete RAG pipeline.<n>RGL addresses key challenges by supporting a variety of graph formats and integrating optimized implementations for essential components.<n>Our evaluations demonstrate that RGL not only accelerates the prototyping process but also enhances the performance and applicability of graph-based RAG systems.
arXiv Detail & Related papers (2025-03-25T03:21:48Z) - Empowering GraphRAG with Knowledge Filtering and Integration [33.174985984667636]
Graph retrieval-augmented generation (GraphRAG) enhances large language models' reasoning by integrating structured knowledge from external graphs.<n>We identify two key challenges that plague GraphRAG: (1) Retrieving noisy and irrelevant information can degrade performance and (2)Excessive reliance on external knowledge suppresses the model's intrinsic reasoning.<n>We propose GraphRAG-FI (Filtering and Integration), consisting of GraphRAG-Filtering and GraphRAG-Integration.
arXiv Detail & Related papers (2025-03-18T01:29:55Z) - G-OSR: A Comprehensive Benchmark for Graph Open-Set Recognition [54.45837774534411]
We introduce textbfG-OSR, a benchmark for evaluating Graph Open-Set Recognition (GOSR) methods at both the node and graph levels.<n>Results offer critical insights into the generalizability and limitations of current GOSR methods.
arXiv Detail & Related papers (2025-03-01T13:02:47Z) - RAG vs. GraphRAG: A Systematic Evaluation and Key Insights [42.31801859160484]
We systematically evaluate Retrieval-Augmented Generation (RAG) and GraphRAG on text-based benchmarks.<n>Our results highlight the distinct strengths of RAG and GraphRAG across different tasks and evaluation perspectives.
arXiv Detail & Related papers (2025-02-17T02:36:30Z) - GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation [84.41557981816077]
We introduce GFM-RAG, a novel graph foundation model (GFM) for retrieval augmented generation.<n>GFM-RAG is powered by an innovative graph neural network that reasons over graph structure to capture complex query-knowledge relationships.<n>It achieves state-of-the-art performance while maintaining efficiency and alignment with neural scaling laws.
arXiv Detail & Related papers (2025-02-03T07:04:29Z) - Retrieval-Augmented Generation with Graphs (GraphRAG) [84.29507404866257]
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information.<n>Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information.<n>Unlike conventional RAG, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains.
arXiv Detail & Related papers (2024-12-31T06:59:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.