論文の概要: A Resource Efficient Quantum Kernel
- arxiv url: http://arxiv.org/abs/2507.03689v1
- Date: Fri, 04 Jul 2025 16:12:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:34.837065
- Title: A Resource Efficient Quantum Kernel
- Title(参考訳): 資源効率の良い量子カーネル
- Authors: Utkarsh Singh, Marco Armenta, Jean-Frédéric Laprade, Aaron Z. Goldberg, Khabat Heshami,
- Abstract要約: 量子カーネルは、量子ビット数とエンタングリング演算を著しく減らした高次元データを扱うように設計されている。
本手法は計算効率を向上しながら重要なデータ特性を保っている。
我々の発見は、近い将来の量子コンピューティングプラットフォーム上で量子機械学習アルゴリズムを実践するための有望な道を開いた。
- 参考スコア(独自算出の注目度): 1.6078134198754157
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum processors may enhance machine learning by mapping high-dimensional data onto quantum systems for processing. Conventional quantum kernels, or feature maps, for encoding data features onto a quantum circuit are currently impractical, as the number of entangling gates scales quadratically with the dimension of the dataset and the number of qubits. In this work, we introduce a quantum kernel designed to handle high-dimensional data with a significantly reduced number of qubits and entangling operations. Our approach preserves essential data characteristics while promoting computational efficiency, as evidenced by extensive experiments on benchmark datasets that demonstrate a marked improvement in both accuracy and resource utilization, as compared to state-of-the-art quantum feature maps. Our noisy simulations results combined with lower resource requirements highlight our kernel's ability to function within the constraints of noisy intermediate-scale quantum devices. Through numerical simulations and small-scale implementation on a superconducting circuit quantum computing platform, we demonstrate that our scheme performs on par or better than a set of classical algorithms for classification. Our findings herald a promising avenue for the practical implementation of quantum machine learning algorithms on near future quantum computing platforms.
- Abstract(参考訳): 量子プロセッサは、高次元データを処理のために量子システムにマッピングすることで機械学習を強化することができる。
従来の量子カーネル、すなわち、量子回路にデータ特徴を符号化するためのフィーチャーマップは、現在、データセットの次元と量子ビットの数を2倍にスケールするため、非現実的である。
本研究では,量子カーネルを導入し,量子ビット数とエンタングリング演算を著しく削減した高次元データを扱う。
提案手法は,現状の量子特徴写像と比較して,精度と資源利用の両面で顕著な改善を示すベンチマークデータセットの広範な実験により実証された,計算効率を向上しながら重要なデータ特性を保っている。
我々のノイズシミュレーションは、リソース要件の低さと相まって、ノイズの多い中間スケール量子デバイスの制約内で機能するカーネルの能力を強調します。
超伝導回路量子コンピューティングプラットフォーム上での数値シミュレーションと小規模実装により,本手法が古典的アルゴリズムの分類よりも同等以上の性能を発揮することを示す。
我々の発見は、近い将来の量子コンピューティングプラットフォーム上で量子機械学習アルゴリズムを実践するための有望な道を開いた。
関連論文リスト
- Typical Machine Learning Datasets as Low-Depth Quantum Circuits [0.40329768057075643]
我々は,従来の画像データを量子状態としてロードする低深度量子回路を見つけるための効率的なアルゴリズムを開発した。
我々は,MNIST,Fashion-MNIST,CIFAR-10,Imagenetteデータセットについて系統的研究を行った。
論文 参考訳(メタデータ) (2025-05-06T10:27:51Z) - An Efficient Quantum Classifier Based on Hamiltonian Representations [50.467930253994155]
量子機械学習(QML)は、量子コンピューティングの利点をデータ駆動タスクに移行しようとする分野である。
入力をパウリ弦の有限集合にマッピングすることで、データ符号化に伴うコストを回避できる効率的な手法を提案する。
我々は、古典的および量子モデルに対して、テキストおよび画像分類タスクに対する我々のアプローチを評価する。
論文 参考訳(メタデータ) (2025-04-13T11:49:53Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Large-scale quantum reservoir learning with an analog quantum computer [45.21335836399935]
我々は中性原子アナログ量子コンピュータの量子力学を利用してデータを処理する量子貯水池学習アルゴリズムを開発した。
アルゴリズムを実験的に実装し、機械学習タスクの様々なカテゴリで競合性能を達成する。
本研究は,従来の量子相関を有効機械学習に活用する可能性を示すものである。
論文 参考訳(メタデータ) (2024-07-02T18:00:00Z) - Quadratic speed-ups in quantum kernelized binary classification [1.3812010983144802]
量子カーネルをデータ間の類似性の尺度として使用するいくつかの量子機械学習アルゴリズムが登場し、量子状態として符号化されたデータセットのバイナリ分類を実行するようになった。
本稿では,QKCに対する新しい量子回路を提案し,量子ビットの数を1つ減らし,サンプルデータに対して回路深さを線形に減らした。
Irisデータセットの数値シミュレーションにより,従来の手法よりも2次的な高速化を検証した。
論文 参考訳(メタデータ) (2024-03-26T07:39:48Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
本稿では,問題固有の量子特徴写像の設計を自動化するデータ駆動型手法を提案する。
私たちの研究は、量子機械学習の進歩におけるディープラーニングの実質的な役割を強調します。
論文 参考訳(メタデータ) (2024-01-20T03:11:59Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Nearest Centroid Classification on a Trapped Ion Quantum Computer [57.5195654107363]
我々は,古典的データを量子状態に効率よくロードし,距離推定を行う手法を用いて,量子近接Centroid分類器を設計する。
MNIST手書き桁データセットの古典的最寄りのセントロイド分類器の精度と8次元合成データの最大100%の精度とを一致させ,11量子ビットトラップイオン量子マシン上で実験的に実証した。
論文 参考訳(メタデータ) (2020-12-08T01:10:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。