Identify, Isolate, and Purge: Mitigating Hallucinations in LVLMs via Self-Evolving Distillation
- URL: http://arxiv.org/abs/2507.04680v1
- Date: Mon, 07 Jul 2025 05:56:19 GMT
- Title: Identify, Isolate, and Purge: Mitigating Hallucinations in LVLMs via Self-Evolving Distillation
- Authors: Wenhao Li, Xiu Su, Jingyi Wu, Feng Yang, Yang Liu, Yi Chen, Shan You, Chang Xu,
- Abstract summary: hallucination issues significantly limit their credibility and application potential.<n>Existing mitigation methods rely on external tools or the comparison of multi-round inference.<n>We propose textbfSElf-textbfEvolving textbfDistillation (textbfSEED), which identifies hallucinations within the inner knowledge of LVLMs, isolates and purges them, and then distills the purified knowledge back into the model.
- Score: 52.52962914918779
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Vision-Language Models (LVLMs) have demonstrated remarkable advancements in numerous areas such as multimedia. However, hallucination issues significantly limit their credibility and application potential. Existing mitigation methods typically rely on external tools or the comparison of multi-round inference, which significantly increase inference time. In this paper, we propose \textbf{SE}lf-\textbf{E}volving \textbf{D}istillation (\textbf{SEED}), which identifies hallucinations within the inner knowledge of LVLMs, isolates and purges them, and then distills the purified knowledge back into the model, enabling self-evolution. Furthermore, we identified that traditional distillation methods are prone to inducing void spaces in the output space of LVLMs. To address this issue, we propose a Mode-Seeking Evolving approach, which performs distillation to capture the dominant modes of the purified knowledge distribution, thereby avoiding the chaotic results that could emerge from void spaces. Moreover, we introduce a Hallucination Elimination Adapter, which corrects the dark knowledge of the original model by learning purified knowledge. Extensive experiments on multiple benchmarks validate the superiority of our SEED, demonstrating substantial improvements in mitigating hallucinations for representative LVLM models such as LLaVA-1.5 and InternVL2. Remarkably, the F1 score of LLaVA-1.5 on the hallucination evaluation metric POPE-Random improved from 81.3 to 88.3.
Related papers
- Mitigating Hallucination in VideoLLMs via Temporal-Aware Activation Engineering [83.63437999696954]
hallucination in large language models (MLLMs) persists as a significant and under-addressed challenge in the video domain.<n>We propose a temporal-aware activation engineering framework for VideoLLMs, which adaptively identifies and manipulates hallucination-sensitive modules.
arXiv Detail & Related papers (2025-05-19T08:12:06Z) - Efficient Contrastive Decoding with Probabilistic Hallucination Detection - Mitigating Hallucinations in Large Vision Language Models - [1.2499537119440245]
Efficient Contrastive Decoding (ECD) is a simple method that leverages probabilistic hallucination detection to shift the output distribution towards contextually accurate answers at inference time.<n>Our experiments show that ECD effectively mitigates hallucinations, outperforming state-of-the-art methods with respect to performance on LVLM benchmarks and computation time.
arXiv Detail & Related papers (2025-04-16T14:50:25Z) - A Survey of Hallucination in Large Visual Language Models [48.794850395309076]
The existence of hallucinations has limited the potential and practical effectiveness of LVLM in various fields.
The structure of LVLMs and main causes of hallucination generation are introduced.
The available hallucination evaluation benchmarks for LVLMs are presented.
arXiv Detail & Related papers (2024-10-20T10:58:58Z) - Iter-AHMCL: Alleviate Hallucination for Large Language Model via Iterative Model-level Contrastive Learning [16.883679810267342]
Iterative Model-level Contrastive Learning (Iter-AHMCL) to address hallucination.
This paper introduces a novel approach called Iterative Model-level Contrastive Learning (Iter-AHMCL) to address hallucination.
arXiv Detail & Related papers (2024-10-16T00:15:40Z) - Alleviating Hallucination in Large Vision-Language Models with Active Retrieval Augmentation [21.31915988262898]
We introduce a novel framework, the Active Retrieval-Augmented large vision-language model (ARA), specifically designed to address hallucinations.
Our empirical observations suggest that by utilizing fitting retrieval mechanisms and timing the retrieval judiciously, we can effectively mitigate the hallucination problem.
arXiv Detail & Related papers (2024-08-01T13:38:58Z) - Visual Description Grounding Reduces Hallucinations and Boosts Reasoning in LVLMs [52.497823009176074]
Large Vision-Language Models (LVLMs) often produce responses that misalign with factual information, a phenomenon known as hallucinations.<n>We introduce Visual Description Grounded Decoding (VDGD), a training-free method designed to enhance visual perception and improve reasoning capabilities in LVLMs.
arXiv Detail & Related papers (2024-05-24T16:21:59Z) - Mitigating Hallucinations in Large Vision-Language Models with Instruction Contrastive Decoding [25.489832294197797]
This paper introduces the Instruction Contrastive Decoding (ICD) method, a novel approach designed to reduce hallucinations during LVLM inference.
Our method is inspired by our observation that what we call disturbance instructions significantly exacerbate hallucinations in multimodal fusion modules.
arXiv Detail & Related papers (2024-03-27T16:04:47Z) - Mitigating Object Hallucination in Large Vision-Language Models via Image-Grounded Guidance [51.30560006045442]
Image-gRounded guIdaNcE (MARINE) is a framework that is both training-free and API-free.<n>MARINE effectively and efficiently reduces object hallucinations during inference by introducing image-grounded guidance to LVLMs.<n>Our framework's flexibility further allows for the integration of multiple vision models, enabling more reliable and robust object-level guidance.
arXiv Detail & Related papers (2024-02-13T18:59:05Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
Large language models (LLMs) have been observed to generate responses that include inaccurate or fabricated information.
We propose a simple textitInduce-then-Contrast Decoding (ICD) strategy to alleviate hallucinations.
arXiv Detail & Related papers (2023-12-25T12:32:49Z) - A New Benchmark and Reverse Validation Method for Passage-level
Hallucination Detection [63.56136319976554]
Large Language Models (LLMs) generate hallucinations, which can cause significant damage when deployed for mission-critical tasks.
We propose a self-check approach based on reverse validation to detect factual errors automatically in a zero-resource fashion.
We empirically evaluate our method and existing zero-resource detection methods on two datasets.
arXiv Detail & Related papers (2023-10-10T10:14:59Z) - The Troubling Emergence of Hallucination in Large Language Models -- An
Extensive Definition, Quantification, and Prescriptive Remediations [10.20632187568563]
We offer a discourse on profiling hallucination based on its degree, orientation, and category.
We categorize hallucination into six types: (i) acronym ambiguity, (ii) numeric nuisance, (iii) generated golem, (iv) virtual voice, (v) geographic erratum, and (vi) time wrap.
We propose Hallucination Vulnerability Index (HVI) as a tool for the wider NLP community, with the potential to serve as a rubric in AI-related policy-making.
arXiv Detail & Related papers (2023-10-08T03:31:29Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.