HGNet: High-Order Spatial Awareness Hypergraph and Multi-Scale Context Attention Network for Colorectal Polyp Detection
- URL: http://arxiv.org/abs/2507.04880v1
- Date: Mon, 07 Jul 2025 11:09:05 GMT
- Title: HGNet: High-Order Spatial Awareness Hypergraph and Multi-Scale Context Attention Network for Colorectal Polyp Detection
- Authors: Xiaofang Liu, Lingling Sun, Xuqing Zhang, Yuannong Ye, Bin zhao,
- Abstract summary: HGNet integrates High-Order Spatial Awareness Hypergraph and Multi-Scale Context Attention.<n> HGNet achieves 94% accuracy, 90.6% recall, and 90% mAP@0.5, significantly improving small lesion differentiation and clinical interpretability.
- Score: 8.385970320948024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Colorectal cancer (CRC) is closely linked to the malignant transformation of colorectal polyps, making early detection essential. However, current models struggle with detecting small lesions, accurately localizing boundaries, and providing interpretable decisions. To address these issues, we propose HGNet, which integrates High-Order Spatial Awareness Hypergraph and Multi-Scale Context Attention. Key innovations include: (1) an Efficient Multi-Scale Context Attention (EMCA) module to enhance lesion feature representation and boundary modeling; (2) the deployment of a spatial hypergraph convolution module before the detection head to capture higher-order spatial relationships between nodes; (3) the application of transfer learning to address the scarcity of medical image data; and (4) Eigen Class Activation Map (Eigen-CAM) for decision visualization. Experimental results show that HGNet achieves 94% accuracy, 90.6% recall, and 90% mAP@0.5, significantly improving small lesion differentiation and clinical interpretability. The source code will be made publicly available upon publication of this paper.
Related papers
- GRU-Net: Gaussian Attention Aided Dense Skip Connection Based MultiResUNet for Breast Histopathology Image Segmentation [24.85210810502592]
This paper presents a modified version of MultiResU-Net for histopathology image segmentation.
It is selected as the backbone for its ability to analyze and segment complex features at multiple scales.
We validate our approach on two diverse breast cancer histopathology image datasets.
arXiv Detail & Related papers (2024-06-12T19:17:17Z) - BetterNet: An Efficient CNN Architecture with Residual Learning and Attention for Precision Polyp Segmentation [0.6062751776009752]
This research presents BetterNet, a convolutional neural network architecture that combines residual learning and attention methods to enhance the accuracy of polyp segmentation.
BetterNet shows promise in integrating computer-assisted diagnosis techniques to enhance the detection of polyps and the early recognition of cancer.
arXiv Detail & Related papers (2024-05-05T21:08:49Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - AttResDU-Net: Medical Image Segmentation Using Attention-based Residual
Double U-Net [0.0]
This paper proposes an attention-based residual Double U-Net architecture (AttResDU-Net) that improves on the existing medical image segmentation networks.
We conducted experiments on three datasets: CVC Clinic-DB, ISIC 2018, and the 2018 Data Science Bowl datasets and achieved Dice Coefficient scores of 94.35%, 91.68%, and 92.45% respectively.
arXiv Detail & Related papers (2023-06-25T14:28:08Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Accurate Cell Segmentation in Digital Pathology Images via Attention
Enforced Networks [0.0]
We propose an Attention Enforced Network (AENet) to integrate local features with global dependencies and weight effective channels adaptively.
In the test stage, we present an individual color normalization method to deal with the stain variation problem.
arXiv Detail & Related papers (2020-12-14T03:39:33Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Multiscale Detection of Cancerous Tissue in High Resolution Slide Scans [0.0]
We present an algorithm for multi-scale tumor (chimeric cell) detection in high resolution slide scans.
Our approach modifies the effective receptive field at different layers in a CNN so that objects with a broad range of varying scales can be detected in a single forward pass.
arXiv Detail & Related papers (2020-10-01T18:56:46Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
We propose a simple yet effective framework, named Dual Objective Networks (DONet), to improve the skin lesion segmentation.
Our DONet adopts two symmetric decoders to produce different predictions for approaching different objectives.
To address the challenge of large variety of lesion scales and shapes in dermoscopic images, we additionally propose a recurrent context encoding module (RCEM)
arXiv Detail & Related papers (2020-08-19T06:02:46Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.