Quantum Spin Glass in the Two-Dimensional Disordered Heisenberg Model via Foundation Neural-Network Quantum States
- URL: http://arxiv.org/abs/2507.05073v1
- Date: Mon, 07 Jul 2025 15:00:55 GMT
- Title: Quantum Spin Glass in the Two-Dimensional Disordered Heisenberg Model via Foundation Neural-Network Quantum States
- Authors: Luciano Loris Viteritti, Riccardo Rende, Giacomo Bracci Testasecca, Jacopo Niedda, Roderich Moessner, Giuseppe Carleo, Antonello Scardicchio,
- Abstract summary: We investigate the frustrated quantum Heisenberg model with bond disorder on nearest-neighbor couplings using the recently introduced Foundation Neural-Network Quantum States framework.<n>We find compelling evidence that the spin glass phase is stable against quantum fluctuations, unlike the classical case where it disappears at any finite temperature.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the two-dimensional frustrated quantum Heisenberg model with bond disorder on nearest-neighbor couplings using the recently introduced Foundation Neural-Network Quantum States framework, which enables accurate and efficient computation of disorder-averaged observables with a single variational optimization. Simulations on large lattices reveal an extended region of the phase diagram where long-range magnetic order vanishes in the thermodynamic limit, while the overlap order parameter, which characterizes quantum spin glass states, remains finite. These findings, supported by a semiclassical analysis based on a large-spin expansion, provide compelling evidence that the spin glass phase is stable against quantum fluctuations, unlike the classical case where it disappears at any finite temperature.
Related papers
- Grassmann Variational Monte Carlo with neural wave functions [45.935798913942904]
We formalize the framework introduced by Pfau et al.citepfau2024accurate in terms of Grassmann geometry of the Hilbert space.<n>We validate our approach on the Heisenberg quantum spin model on the square lattice, achieving highly accurate energies and physical observables for a large number of excited states.
arXiv Detail & Related papers (2025-07-14T13:53:13Z) - Enhanced Quantum behavior on frustrated Ising model: Quantum Approximate Optimization Algorithm study [0.23677733113962515]
We investigated the quantum effects of a frustrated Ising model on a two-dimensional square lattice using the Quantum Approximate Optimization Algorithm (QAOA)<n>We found that in the weakly frustrated region, QAOA measurements rarely capture first excited states, as they are energetically well separated from the ground state.<n>In contrast, near the quantum phase transition point, excited states appear more frequently in QAOA measurements, highlighting the increased role of quantum fluctuations.
arXiv Detail & Related papers (2025-07-10T06:18:58Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - A Floquet-Rydberg quantum simulator for confinement in $\mathbb{Z}_2$
gauge theories [44.99833362998488]
Recent advances in the field of quantum technologies have opened up the road for the realization of small-scale quantum simulators.
We present a scalable Floquet scheme for the quantum simulation of the real-time dynamics in a $mathbbZ$ LGT.
We show that an observation of gauge-invariant confinement dynamics in the Floquet-Rydberg setup is at reach of current experimental techniques.
arXiv Detail & Related papers (2023-11-28T13:01:24Z) - Simulating the Transverse Field Ising Model on the Kagome Lattice using a Programmable Quantum Annealer [0.0]
We embed the antiferromagnetic Ising model on the Kagome lattice on the latest architecture of D-Wave's quantum annealer, the Advantage2 prototype.
We show that under a finite longitudinal field the system exhibits a one-third magnetization plateau, consistent with a classical spin liquid state of reduced entropy.
An anneal-pause-quench protocol is then used to extract an experimental ensemble of states resulting from the equilibration of the model at finite transverse and longitudinal field.
arXiv Detail & Related papers (2023-10-10T15:22:01Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Emergent glassy behavior in a kagome Rydberg atom array [3.495071802618309]
We present large-scale quantum Monte Carlo simulation results on a realistic Hamiltonian of kagome-lattice Rydberg atom arrays.
Although the system has no intrinsic disorder, intriguingly, our analyses of static and dynamic properties reveal textitemergent glassy behavior.
arXiv Detail & Related papers (2023-01-17T19:00:05Z) - Quantum and classical correlations in open quantum-spin lattices via
truncated-cumulant trajectories [0.0]
We show a new method to treat open quantum-spin lattices, based on the solution of the open-system dynamics.
We validate this approach in the paradigmatic case of the phase transitions of the dissipative 2D XYZ lattice, subject to spontaneous decay.
arXiv Detail & Related papers (2022-09-27T13:23:38Z) - Localization and melting of interfaces in the two-dimensional quantum
Ising model [0.0]
We study the non-equilibrium evolution of coexisting ferromagnetic domains in the two-dimensional quantum Ising model.
We demonstrate that the quantum-fluctuating interface delimiting a large bubble can be studied as an effective one-dimensional system.
arXiv Detail & Related papers (2022-03-17T17:48:51Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.