論文の概要: How Rules Represent Causal Knowledge: Causal Modeling with Abductive Logic Programs
- arxiv url: http://arxiv.org/abs/2507.05088v1
- Date: Mon, 07 Jul 2025 15:12:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:35.469439
- Title: How Rules Represent Causal Knowledge: Causal Modeling with Abductive Logic Programs
- Title(参考訳): ルールが因果知識をどのように表現するか:帰納論理プログラムを用いた因果モデリング
- Authors: Kilian Rückschloß, Felix Weitkämper,
- Abstract要約: 本稿では,階層化帰納論理プログラムの設定に対するパールの因果性と介入のアプローチを拡張した。
これは、そのようなプログラムの安定なモデルが、哲学的基礎の上に構築することで因果的解釈を与えることができることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pearl observes that causal knowledge enables predicting the effects of interventions, such as actions, whereas descriptive knowledge only permits drawing conclusions from observation. This paper extends Pearl's approach to causality and interventions to the setting of stratified abductive logic programs. It shows how stable models of such programs can be given a causal interpretation by building on philosophical foundations and recent work by Bochman and Eelink et al. In particular, it provides a translation of abductive logic programs into causal systems, thereby clarifying the informal causal reading of logic program rules and supporting principled reasoning about external actions. The main result establishes that the stable model semantics for stratified programs conforms to key philosophical principles of causation, such as causal sufficiency, natural necessity, and irrelevance of unobserved effects. This justifies the use of stratified abductive logic programs as a framework for causal modeling and for predicting the effects of interventions
- Abstract(参考訳): パールは、因果的知識は行動のような介入の効果を予測できるのに対し、記述的知識は観察から結論を引き出すことを許している。
本稿では,階層化帰納論理プログラムの設定に対するパールの因果性と介入のアプローチを拡張した。
このようなプログラムの安定なモデルが、哲学的基礎の上に構築され、Bochman と Eelink らによる最近の研究によって因果的解釈を得られることを示し、特に、帰納的論理プログラムを因果的システムに翻訳することで、論理プログラム規則の非公式因果的読み出しを明確にし、外部行動に関する原則的推論をサポートする。
その結果、階層化されたプログラムの安定なモデル意味論は、因果的充足性、自然必然性、観察されない効果の無関係など、因果関係の重要な哲学的原理に適合していることが判明した。
これは、因果モデリングおよび介入の効果予測のためのフレームワークとしての階層化導出論理プログラムの使用を正当化する。
関連論文リスト
- Failure Modes of LLMs for Causal Reasoning on Narratives [51.19592551510628]
世界の知識と論理的推論の相互作用について検討する。
最先端の大規模言語モデル(LLM)は、しばしば表面的な一般化に依存している。
タスクの単純な再構成により、より堅牢な推論行動が引き起こされることを示す。
論文 参考訳(メタデータ) (2024-10-31T12:48:58Z) - Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement [92.61557711360652]
言語モデル(LM)は、しばしば帰納的推論に不足する。
我々は,反復的仮説修正を通じて,LMの帰納的推論能力を体系的に研究する。
本研究は, LMの誘導的推論過程と人間とのいくつかの相違点を明らかにし, 誘導的推論タスクにおけるLMの使用の可能性と限界に光を当てる。
論文 参考訳(メタデータ) (2023-10-12T17:51:10Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
本稿では,論理的推論の基盤として,対話レベルと単語レベルの両方の文脈を扱う総合グラフネットワーク(HGN)を提案する。
具体的には、ノードレベルの関係とタイプレベルの関係は、推論過程におけるブリッジと解釈できるが、階層的な相互作用機構によってモデル化される。
論文 参考訳(メタデータ) (2023-06-21T07:34:27Z) - Argumentative Characterizations of (Extended) Disjunctive Logic Programs [2.055949720959582]
仮定に基づく議論は、通常の論理プログラムだけでなく、解法論理プログラムとその拡張も表現できることを示す。
議論フレームワークの中核となるロジックが尊重すべき解離の推論ルールについて考察する。
論文 参考訳(メタデータ) (2023-06-12T14:01:38Z) - Learning Causally Disentangled Representations via the Principle of Independent Causal Mechanisms [17.074858228123706]
本稿では、因果関係の観測ラベルによって教師される因果関係の非絡み合い表現を学習するための枠組みを提案する。
この枠組みは, 極めて不整合な因果関係を生じさせ, 介入の堅牢性を向上し, 反事実発生と相容れないことを示す。
論文 参考訳(メタデータ) (2023-06-02T00:28:48Z) - Causal Inference Principles for Reasoning about Commonsense Causality [93.19149325083968]
コモンセンス因果推論(Commonsense causality reasoning)は、平均的な人によって妥当と見なされる自然言語記述における妥当な原因と影響を特定することを目的としている。
既存の作業は通常、深い言語モデルに全面的に依存しており、共起を混同する可能性がある。
古典的因果原理に触発され,我々はCCRの中心的問題を明確にし,観察研究と自然言語における人間の対象間の類似性を引き出す。
本稿では,時間信号をインシデント・インシデント・インシデント・インシデント・インシデントとして活用する新しいフレームワークであるROCKをReason O(A)bout Commonsense K(C)ausalityに提案する。
論文 参考訳(メタデータ) (2022-01-31T06:12:39Z) - A Topological Perspective on Causal Inference [10.965065178451104]
仮定のない因果推論は、構造因果モデルの単なる集合においてのみ可能であることを示す。
以上の結果から,有効な因果推論を行うのに十分な帰納的仮定は,原理上は統計的に検証できないことが示唆された。
我々のトポロジカルアプローチのさらなる利点は、無限に多くの変数を持つSCMに容易に対応できることである。
論文 参考訳(メタデータ) (2021-07-18T23:09:03Z) - Thinking About Causation: A Causal Language with Epistemic Operators [58.720142291102135]
我々はエージェントの状態を表すことで因果モデルの概念を拡張した。
対象言語の側面には、知識を表現する演算子や、新しい情報を観察する行為が追加されます。
我々は、論理の健全かつ完全な公理化を提供し、このフレームワークと因果的チーム意味論との関係について論じる。
論文 参考訳(メタデータ) (2020-10-30T12:16:45Z) - Towards Interpretable Reasoning over Paragraph Effects in Situation [126.65672196760345]
我々は,原因と効果を理解するためのモデルを必要とする状況において,段落効果を推論する作業に焦点をあてる。
本稿では,ニューラルネットワークモジュールを用いた推論プロセスの各ステップを明示的にモデル化する逐次的手法を提案する。
特に、5つの推論モジュールはエンドツーエンドで設計され、学習され、より解釈可能なモデルにつながる。
論文 参考訳(メタデータ) (2020-10-03T04:03:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。