論文の概要: Robust Power System State Estimation using Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2507.05874v1
- Date: Tue, 08 Jul 2025 10:58:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-09 16:34:37.934607
- Title: Robust Power System State Estimation using Physics-Informed Neural Networks
- Title(参考訳): 物理インフォームドニューラルネットワークを用いたロバスト電力系統状態推定
- Authors: Solon Falas, Markos Asprou, Charalambos Konstantinou, Maria K. Michael,
- Abstract要約: 本稿では,電力系統状態推定の精度とロバスト性を高めるために,物理インフォームドニューラルネットワーク(PINN)を用いたハイブリッドアプローチを提案する。
ニューラルネットワークアーキテクチャに物理法則を埋め込むことで、PINNは正常かつ欠陥のある条件下での伝送グリッドアプリケーションの推定精度を向上させる。
- 参考スコア(独自算出の注目度): 1.3258437587406258
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern power systems face significant challenges in state estimation and real-time monitoring, particularly regarding response speed and accuracy under faulty conditions or cyber-attacks. This paper proposes a hybrid approach using physics-informed neural networks (PINNs) to enhance the accuracy and robustness, of power system state estimation. By embedding physical laws into the neural network architecture, PINNs improve estimation accuracy for transmission grid applications under both normal and faulty conditions, while also showing potential in addressing security concerns such as data manipulation attacks. Experimental results show that the proposed approach outperforms traditional machine learning models, achieving up to 83% higher accuracy on unseen subsets of the training dataset and 65% better performance on entirely new, unrelated datasets. Experiments also show that during a data manipulation attack against a critical bus in a system, the PINN can be up to 93% more accurate than an equivalent neural network.
- Abstract(参考訳): 現代の電力システムは、特に障害条件下での応答速度と精度やサイバー攻撃に関して、状態推定とリアルタイム監視において重大な課題に直面している。
本稿では,電力系統状態推定の精度とロバスト性を高めるために,物理インフォームドニューラルネットワーク(PINN)を用いたハイブリッドアプローチを提案する。
ニューラルネットワークアーキテクチャに物理法則を埋め込むことで、PINNは正常かつ障害のある条件下での送信グリッドアプリケーションの推定精度を向上させると同時に、データ操作攻撃のようなセキュリティ上の問題に対処する可能性を示している。
実験の結果、提案手法は従来の機械学習モデルよりも優れており、トレーニングデータセットの目に見えないサブセットでは最大83%の精度で、全く新しい無関係なデータセットでは65%のパフォーマンス向上を実現している。
実験では、システム内のクリティカルバスに対するデータ操作攻撃の間、PINNは同等のニューラルネットワークよりも最大93%正確であることが示されている。
関連論文リスト
- Advanced technology in railway track monitoring using the GPR Technique: A Review [41.94295877935867]
グラウンド・ペネトレーション・レーダー (GPR) は、鉄道線路の監視に使用できる電磁探査技術である。
バラストポケット、ファウルドバラスト、排水不良、下級集落などの欠陥を検出することができる。
本稿では,実世界のGPRデータのキャリブレーションに合成モデリングを用いる手法について述べる。
ディープラーニング技術、特にCNN(Convolutional Neural Networks)やRNN(Recurrent Neural Networks)も、GPRイメージの欠陥に関連するパターンを認識する上での有効性を強調している。
論文 参考訳(メタデータ) (2025-01-19T18:01:39Z) - Graph neural networks for power grid operational risk assessment under evolving grid topology [4.6289929100615]
本稿では、その後の数時間で電力グリッド内の危険条件を識別するグラフニューラルネットワーク(GNN)の能力について検討する。
GNNは、電力供給と需要の異なる条件下で電力グリッドの集約されたバスレベルを予測するために、教師付き学習を使用して訓練される。
GNNに基づく信頼性とリスクアセスメントの優れた精度は、GNNモデルが状況認識を大幅に改善できることを示している。
論文 参考訳(メタデータ) (2024-05-12T17:40:27Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
本研究は,線形等式制約を厳格に保証する物理インフォームドニューラルネットワークKKT-hPINNを提案する。
溶融タンク炉ユニット, 抽出蒸留サブシステム, 化学プラントのアスペンモデル実験により, このモデルが予測精度をさらに高めることを示した。
論文 参考訳(メタデータ) (2024-02-11T17:40:26Z) - Graph Neural Networks for Pressure Estimation in Water Distribution
Systems [44.99833362998488]
水分配ネットワーク(WDN)における圧力と流量の推定により、水管理会社は制御操作を最適化できる。
物理に基づくモデリングとデータ駆動型アプローチであるグラフニューラルネットワーク(GNN)を組み合わせて,圧力推定問題に対処する。
我々のGNNモデルでは、オランダの大規模WDNの圧力は1.94mH$O、MAPEは7%と見積もられている。
論文 参考訳(メタデータ) (2023-11-17T15:30:12Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Robustness of Physics-Informed Neural Networks to Noise in Sensor Data [0.0]
PINNは、物理に基づくドメイン知識をニューラルネットワークモデルに組み込む効果的な方法であることが示されている。
本研究では、物理インフォームドニューラルネットワークのロバスト性について、データのノイズの大きさについて予備的な調査を行う。
論文 参考訳(メタデータ) (2022-11-22T06:24:43Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
本稿では,物理制約付き深部ニューラルネットワーク(PCDNN)による高精度電圧予測手法を提案する。
ePCDNNは、電圧放電曲線のテール領域を含む電荷放電サイクルを通して、電圧応答を正確にキャプチャすることができる。
論文 参考訳(メタデータ) (2022-03-03T19:56:24Z) - Physics-Informed Neural Networks for Minimising Worst-Case Violations in
DC Optimal Power Flow [0.0]
物理インフォームドニューラルネットワークは、基礎となる物理システムの既存のモデルを利用して、少ないデータで高精度な結果を生成する。
このようなアプローチは、計算時間を劇的に削減し、電力システムにおける計算集約的なプロセスの優れた見積を生成するのに役立つ。
このようなニューラルネットワークは、電力系統における安全クリティカルな応用に適用でき、電力系統運用者の間で高い信頼関係を構築することができる。
論文 参考訳(メタデータ) (2021-06-28T10:45:22Z) - Accuracy of neural networks for the simulation of chaotic dynamics:
precision of training data vs precision of the algorithm [0.0]
時系列に適応した3つの異なるニューラルネットワーク技術を用いて,異なる精度でLorenzシステムをシミュレートする。
その結果,ESNネットワークはシステムのダイナミクスを正確に予測する上で優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-08T17:25:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。