論文の概要: Limitations of Physics-Informed Neural Networks: a Study on Smart Grid Surrogation
- arxiv url: http://arxiv.org/abs/2508.21559v1
- Date: Fri, 29 Aug 2025 12:15:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-01 19:45:11.035215
- Title: Limitations of Physics-Informed Neural Networks: a Study on Smart Grid Surrogation
- Title(参考訳): 物理インフォームドニューラルネットワークの限界:スマートグリッド・サロゲーションに関する研究
- Authors: Julen Cestero, Carmine Delle Femine, Kenji S. Muro, Marco Quartulli, Marcello Restelli,
- Abstract要約: PINNは、物理法則を直接学習フレームワークに組み込むことによって、スマートグリッドモデリングの変革的なアプローチを示す。
本稿では、PINNの機能をスマートグリッドダイナミクスの代理モデルとして評価する。
PINNの優れた一般化と誤り低減におけるデータ駆動モデルの性能を実証する。
- 参考スコア(独自算出の注目度): 29.49941497527361
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-Informed Neural Networks (PINNs) present a transformative approach for smart grid modeling by integrating physical laws directly into learning frameworks, addressing critical challenges of data scarcity and physical consistency in conventional data-driven methods. This paper evaluates PINNs' capabilities as surrogate models for smart grid dynamics, comparing their performance against XGBoost, Random Forest, and Linear Regression across three key experiments: interpolation, cross-validation, and episodic trajectory prediction. By training PINNs exclusively through physics-based loss functions (enforcing power balance, operational constraints, and grid stability) we demonstrate their superior generalization, outperforming data-driven models in error reduction. Notably, PINNs maintain comparatively lower MAE in dynamic grid operations, reliably capturing state transitions in both random and expert-driven control scenarios, while traditional models exhibit erratic performance. Despite slight degradation in extreme operational regimes, PINNs consistently enforce physical feasibility, proving vital for safety-critical applications. Our results contribute to establishing PINNs as a paradigm-shifting tool for smart grid surrogation, bridging data-driven flexibility with first-principles rigor. This work advances real-time grid control and scalable digital twins, emphasizing the necessity of physics-aware architectures in mission-critical energy systems.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、学習フレームワークに直接物理法則を統合することにより、従来のデータ駆動手法におけるデータ不足と物理的一貫性の重要な課題に対処することで、スマートグリッドモデリングに変革的なアプローチを提案する。
本稿では,スマートグリッドダイナミクスのサロゲートモデルとしてのPINNの性能を評価し,その性能をXGBoost,Random Forest,Linear Regressionの3つの重要な実験(補間,クロスバリデーション,エピソード軌道予測)で比較した。
PINNを物理に基づく損失関数(電力収支、運用上の制約、グリッド安定性)でのみ訓練することにより、エラー低減におけるデータ駆動モデルよりも優れた一般化を実証する。
特に、PINNは動的グリッド操作において比較的低いMAEを維持し、ランダムな制御シナリオとエキスパート駆動の制御シナリオの両方で状態遷移を確実にキャプチャする。
極度の運用体制がわずかに悪化しているにもかかわらず、PINNは一貫して物理的な実現可能性を強化し、安全上重要な用途に欠かせないことを証明している。
本研究は,スマートグリッドサロゲーションのためのパラダイムシフトツールとしてのPINNの確立に寄与する。
この研究はリアルタイムグリッド制御とスケーラブルなデジタルツインを推進し、ミッションクリティカルエネルギーシステムにおける物理対応アーキテクチャの必要性を強調した。
関連論文リスト
- Learning Satellite Attitude Dynamics with Physics-Informed Normalising Flow [0.26217304977339473]
宇宙機の姿勢力学の学習に物理インフォームドニューラルネットワークを組み込むことの利点について検討する。
バシリスクシミュレータで生成されたシミュレーションデータに基づいて複数のモデルを訓練する。
PINNベースのモデルは、制御精度とロバスト性の観点から、純粋にデータ駆動モデルよりも一貫して優れています。
論文 参考訳(メタデータ) (2025-08-11T10:50:49Z) - PI-WAN: A Physics-Informed Wind-Adaptive Network for Quadrotor Dynamics Prediction in Unknown Environments [3.4802474792943805]
本研究では, 物理インフォームド・ウィンド・アダプティブ・ネットワーク (PI-WAN) を導入する。
具体的には、PI-WANは時間的畳み込みネットワーク(TCN)アーキテクチャを採用し、歴史的飛行データから時間的依存関係を効率的にキャプチャする。
実時間予測結果をモデル予測制御(MPC)フレームワークに組み込むことで,クローズドループ追跡性能の向上を実現する。
論文 参考訳(メタデータ) (2025-07-01T14:48:22Z) - Physics-Informed Neural Networks for Electrical Circuit Analysis: Applications in Dielectric Material Modeling [0.0]
物理情報ニューラルネットワーク(PINN)は、物理法則を直接学習プロセスに組み込むことによって、有望なアプローチを提供する。
本稿では、PINNの実装に特化して設計されたDeepXDEフレームワークの機能と制限について説明する。
電流(ln(I))に対数変換を適用することにより,PINN予測の安定性と精度が著しく向上することを示す。
論文 参考訳(メタデータ) (2024-11-13T19:08:36Z) - Knowledge-Based Convolutional Neural Network for the Simulation and Prediction of Two-Phase Darcy Flows [3.5707423185282656]
物理インフォームドニューラルネットワーク(PINN)は、科学計算とシミュレーションの分野で強力なツールとして注目されている。
本稿では、ニューラルネットワークのパワーと、離散化微分方程式によって課される力学を組み合わせることを提案する。
支配方程式を識別することにより、PINNは不連続性を考慮し、入力と出力の間の基礎となる関係を正確に捉えることを学ぶ。
論文 参考訳(メタデータ) (2024-04-04T06:56:32Z) - Physics-Informed Deep Learning of Rate-and-State Fault Friction [0.0]
我々は, 前方問題と非線形欠陥摩擦パラメータの直接逆変換のためのマルチネットワークPINNを開発した。
本稿では1次元および2次元のストライク・スリップ断層に対する速度・状態摩擦を考慮した計算PINNフレームワークを提案する。
その結果, 断層におけるパラメータ逆転のネットワークは, 結合した物質変位のネットワークよりもはるかに優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-14T23:53:25Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。