A Hydrodynamic Theory for Non-Equilibrium Full Counting Statistics in One-Dimensional Quantum Systems
- URL: http://arxiv.org/abs/2507.05954v1
- Date: Tue, 08 Jul 2025 12:53:33 GMT
- Title: A Hydrodynamic Theory for Non-Equilibrium Full Counting Statistics in One-Dimensional Quantum Systems
- Authors: David X. Horvath, Benjamin Doyon, Paola Ruggiero,
- Abstract summary: We study the dynamics of charge fluctuations after homogeneous quantum quenches in one-dimensional systems with ballistic transport.<n>This formula links the non-equilibrium charge fluctuation after the quench to the fluctuations of the associated current after a charge-biased inhomogeneous modification of the original quench.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the dynamics of charge fluctuations after homogeneous quantum quenches in one-dimensional systems with ballistic transport. For short but macroscopic times where the non-trivial dynamics is largely dominated by long-range correlations, a simple expression for the associated full counting statistics can be obtained by hydrodynamic arguments. This formula links the non-equilibrium charge fluctuation after the quench to the fluctuations of the associated current after a charge-biased inhomogeneous modification of the original quench which corresponds to the paradigmatic partitioning protocol. Under certain assumptions, the fluctuations in the latter case can be expressed by explicit closed form formulas in terms of thermodynamic and hydrodynamic quantities via the Ballistic Fluctuations Theory. In this work, we identify precise physical conditions for the applicability of a fully hydrodynamic theory, and provide a detailed analysis explicitly demonstrating how such conditions are met and how this leads to such hydrodynamic treatment. We discuss these conditions at length in non-relativistic free fermions, where calculations become feasible and allow for cross-checks against exact results. In physically relevant cases, strong long-range correlations can complicate the hydrodynamic picture, but our formula still correctly reproduces the first cumulants.
Related papers
- Eigenstate Thermalization Hypothesis correlations via non-linear Hydrodynamics [0.0]
We provide a prediction for the late-time behavior of time-ordered free cumulants in the thermodynamic limit.<n>Good agreement is observed in both infinite and finite-temperature regimes.
arXiv Detail & Related papers (2025-05-11T06:35:16Z) - Symmetries, Conservation Laws and Entanglement in Non-Hermitian Fermionic Lattices [37.69303106863453]
Non-Hermitian quantum many-body systems feature steady-state entanglement transitions driven by unitary dynamics and dissipation.<n>We show that the steady state is obtained by filling single-particle right eigenstates with the largest imaginary part of the eigenvalue.<n>We illustrate these principles in the Hatano-Nelson model with periodic boundary conditions and the non-Hermitian Su-Schrieffer-Heeger model.
arXiv Detail & Related papers (2025-04-11T14:06:05Z) - Full counting statistics after quantum quenches as hydrodynamic fluctuations [0.0]
The statistics of fluctuations on large regions of space encodes universal properties of many-body systems.
Although exact results have been conjectured in integrable models, a correct understanding of the physics is largely missing.
arXiv Detail & Related papers (2024-11-21T18:38:40Z) - Thermalization and hydrodynamic long-time tails in a Floquet system [0.0]
We investigate whether classical hydrodynamic field theories can predict the long-time dynamics of many-particle quantum systems.<n>Based on a field theoretical analysis and symmetry arguments, we map each operator in the spin model to the corresponding fields in hydrodynamics.<n>We illustrate these findings by studying the time evolution of all 255 Hermitian operators that can be defined on four neighboring sites.
arXiv Detail & Related papers (2024-10-21T16:47:33Z) - Physical consequences of Lindbladian invariance transformations [44.99833362998488]
We show that symmetry transformations can be exploited, on their own, to optimize practical physical tasks.
In particular, we show how they can be used to change the measurable values of physical quantities regarding the exchange of energy and/or information with the environment.
arXiv Detail & Related papers (2024-07-02T18:22:11Z) - Quantum thermodynamics of the Caldeira-Leggett model with non-equilibrium Gaussian reservoirs [0.0]
We introduce a non-equilibrium version of the Caldeira-Leggett model in which a quantum particle is strongly coupled to a set of engineered reservoirs.
Strongly displaced/squeezed reservoirs can be used to generate an effective time dependence in the system Hamiltonian.
We show the quantum-classical correspondence between the heat statistics in the non-equilibrium Caldeira-Leggett model and the statistics of a classical Langevin particle under the action of squeezed and displaced colored noises.
arXiv Detail & Related papers (2024-04-30T21:41:34Z) - Simultaneous symmetry breaking in spontaneous Floquet states: Floquet-Nambu-Goldstone modes, Floquet thermodynamics, and the time operator [49.1574468325115]
We study simultaneous symmetry-breaking in a spontaneous Floquet state, focusing on the specific case of an atomic condensate.
We first describe the quantization of the Nambu-Goldstone (NG) modes for a stationary state simultaneously breaking several symmetries of the Hamiltonian.
We extend the formalism to Floquet states simultaneously breaking several symmetries, where Goldstone theorem translates into the emergence of Floquet-Nambu-Goldstone modes with zero quasi-energy.
arXiv Detail & Related papers (2024-02-16T16:06:08Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Emergence of fluctuating hydrodynamics in chaotic quantum systems [47.187609203210705]
macroscopic fluctuation theory (MFT) was recently developed to model the hydrodynamics of fluctuations.
We perform large-scale quantum simulations that monitor the full counting statistics of particle-number fluctuations in boson ladders.
Our results suggest that large-scale fluctuations of isolated quantum systems display emergent hydrodynamic behavior.
arXiv Detail & Related papers (2023-06-20T11:26:30Z) - Scaling of fronts and entanglement spreading during a domain wall
melting [0.0]
We revisit the out-of-equilibrium physics arising during the unitary evolution of a one-dimensional XXZ spin chain.
In the last part of the work, we include large-scale quantum fluctuations on top of the semi-classical hydrodynamic background.
arXiv Detail & Related papers (2023-03-17T15:34:43Z) - Statistical mechanics of one-dimensional quantum droplets [0.0]
We study the dynamical relaxation process of modulationally unstable one-dimensional quantum droplets.
We find that the instability leads to the spontaneous formation of quantum droplets featuring multiple collisions.
arXiv Detail & Related papers (2021-02-25T15:30:30Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.