Eigenstate Thermalization Hypothesis correlations via non-linear Hydrodynamics
- URL: http://arxiv.org/abs/2505.06869v1
- Date: Sun, 11 May 2025 06:35:16 GMT
- Title: Eigenstate Thermalization Hypothesis correlations via non-linear Hydrodynamics
- Authors: Jiaozi Wang, Ruchira Mishra, Tian-Hua Yang, Luca V. Delacrétaz, Silvia Pappalardi,
- Abstract summary: We provide a prediction for the late-time behavior of time-ordered free cumulants in the thermodynamic limit.<n>Good agreement is observed in both infinite and finite-temperature regimes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The thermalizing dynamics of many-body systems is often described through the lens of the Eigenstate Thermalization Hypothesis (ETH). ETH postulates that the statistical properties of observables, when expressed in the energy eigenbasis, are described by smooth functions, that also describe correlations among the matrix elements. However, the form of these functions is usually left undetermined. In this work, we investigate the structure of such smooth functions by focusing on their Fourier transform, recently identified as free cumulants. Using non-linear hydrodynamics, we provide a prediction for the late-time behavior of time-ordered free cumulants in the thermodynamic limit. The prediction is further corroborated by large-scale numerical simulations of a non-integrable spin-$1$ Ising model, which exhibits diffusive transport behavior. Good agreement is observed in both infinite and finite-temperature regimes and for a collection of local observables. Our results indicate that the smooth multi-point correlation functions within the ETH framework admit a universal hydrodynamic description at low frequencies.
Related papers
- A Hydrodynamic Theory for Non-Equilibrium Full Counting Statistics in One-Dimensional Quantum Systems [0.0]
We study the dynamics of charge fluctuations after homogeneous quantum quenches in one-dimensional systems with ballistic transport.<n>This formula links the non-equilibrium charge fluctuation after the quench to the fluctuations of the associated current after a charge-biased inhomogeneous modification of the original quench.
arXiv Detail & Related papers (2025-07-08T12:53:33Z) - Symmetries, Conservation Laws and Entanglement in Non-Hermitian Fermionic Lattices [37.69303106863453]
Non-Hermitian quantum many-body systems feature steady-state entanglement transitions driven by unitary dynamics and dissipation.<n>We show that the steady state is obtained by filling single-particle right eigenstates with the largest imaginary part of the eigenvalue.<n>We illustrate these principles in the Hatano-Nelson model with periodic boundary conditions and the non-Hermitian Su-Schrieffer-Heeger model.
arXiv Detail & Related papers (2025-04-11T14:06:05Z) - Full counting statistics after quantum quenches as hydrodynamic fluctuations [0.0]
The statistics of fluctuations on large regions of space encodes universal properties of many-body systems.
Although exact results have been conjectured in integrable models, a correct understanding of the physics is largely missing.
arXiv Detail & Related papers (2024-11-21T18:38:40Z) - Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.<n>Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)<n>By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Hydrodynamics and the eigenstate thermalization hypothesis [0.0]
The eigenstate thermalization hypothesis (ETH) describes the properties of diagonal and off-diagonal matrix elements of local operators in the eigenenergy basis.<n>We propose a relation between (i) the singular behaviour of the off-diagonal part of ETH at small energy differences, and (ii) the smooth profile of the diagonal part of ETH as a function of the energy density.
arXiv Detail & Related papers (2024-05-27T09:13:58Z) - Eigenstate correlations, the eigenstate thermalization hypothesis, and quantum information dynamics in chaotic many-body quantum systems [0.0]
We consider correlations between eigenstates specific to spatially extended systems and that characterise entanglement dynamics and operator spreading.
The correlations associated with scrambling of quantum information lie outside the standard framework established by the eigenstate thermalisation hypothesis (ETH)
We establish the simplest correlation function that captures these correlations and discuss features of its behaviour that are expected to be universal at long distances and low energies.
arXiv Detail & Related papers (2023-09-22T16:28:15Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Coherent Transport in Periodically Driven Mesoscopic Conductors: From
Scattering Matrices to Quantum Thermodynamics [0.0]
Floquet scattering amplitudes describe the transition of a transport carrier through a periodically driven sample.
We show that this framework is inherently consistent with the first and the second law of thermodynamics.
We derive a generalized Green-Kubo relation, which makes it possible to express the response of any mean currents to small variations of temperature and chemical potential.
arXiv Detail & Related papers (2020-02-25T17:34:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.