Full counting statistics after quantum quenches as hydrodynamic fluctuations
- URL: http://arxiv.org/abs/2411.14406v1
- Date: Thu, 21 Nov 2024 18:38:40 GMT
- Title: Full counting statistics after quantum quenches as hydrodynamic fluctuations
- Authors: David X. Horvath, Benjamin Doyon, Paola Ruggiero,
- Abstract summary: The statistics of fluctuations on large regions of space encodes universal properties of many-body systems.
Although exact results have been conjectured in integrable models, a correct understanding of the physics is largely missing.
- Score: 0.0
- License:
- Abstract: The statistics of fluctuations on large regions of space encodes universal properties of many-body systems. At equilibrium, it is described by thermodynamics. However, away from equilibrium such as after quantum quenches, the fundamental principles are more nebulous. In particular, although exact results have been conjectured in integrable models, a correct understanding of the physics is largely missing. In this letter, we explain these principles, taking the example of the number of particles lying on a large interval in one-dimensional interacting systems. These are based on simple hydrodynamic arguments from the theory of ballistically transported fluctuations, and in particular the Euler-scale transport of long-range correlations. Using these principles, we obtain the full counting statistics (FCS) in terms of thermodynamic and hydrodynamic quantities, whose validity depends on the structure of hydrodynamic modes. In fermionic-statistics interacting integrable models with a continuum of hydrodynamic modes, such as the Lieb-Liniger model for cold atomic gases, the formula reproduces previous conjectures, but is in fact not exact: it gives the correct cumulants up to, including, order 5, while long-range correlations modify higher cumulants. In integrable and non-integrable models with two or less hydrodynamic modes, the formula is expected to give all cumulants.
Related papers
- Quantum thermodynamics of the Caldeira-Leggett model with non-equilibrium Gaussian reservoirs [0.0]
We introduce a non-equilibrium version of the Caldeira-Leggett model in which a quantum particle is strongly coupled to a set of engineered reservoirs.
Strongly displaced/squeezed reservoirs can be used to generate an effective time dependence in the system Hamiltonian.
We show the quantum-classical correspondence between the heat statistics in the non-equilibrium Caldeira-Leggett model and the statistics of a classical Langevin particle under the action of squeezed and displaced colored noises.
arXiv Detail & Related papers (2024-04-30T21:41:34Z) - Emergent Anomalous Hydrodynamics at Infinite Temperature in a Long-Range XXZ Model [14.297989605089663]
We find anomalous hydrodynamics in a spin-1/2 XXZ chain with power-law couplings.
We quantify the degree of quantum chaos using the Kullback-Leibler divergence.
This work offers another deep understanding of emergent anomalous transport phenomena in a wider range of non-integrable quantum many-body systems.
arXiv Detail & Related papers (2024-03-26T17:50:04Z) - Emergence of fluctuating hydrodynamics in chaotic quantum systems [47.187609203210705]
macroscopic fluctuation theory (MFT) was recently developed to model the hydrodynamics of fluctuations.
We perform large-scale quantum simulations that monitor the full counting statistics of particle-number fluctuations in boson ladders.
Our results suggest that large-scale fluctuations of isolated quantum systems display emergent hydrodynamic behavior.
arXiv Detail & Related papers (2023-06-20T11:26:30Z) - Scaling of fronts and entanglement spreading during a domain wall
melting [0.0]
We revisit the out-of-equilibrium physics arising during the unitary evolution of a one-dimensional XXZ spin chain.
In the last part of the work, we include large-scale quantum fluctuations on top of the semi-classical hydrodynamic background.
arXiv Detail & Related papers (2023-03-17T15:34:43Z) - Thermodynamic Unification of Optimal Transport: Thermodynamic
Uncertainty Relation, Minimum Dissipation, and Thermodynamic Speed Limits [0.0]
We show that the Wasserstein distance equals the minimum product of irreversible entropy production and dynamical state mobility over all admissible Markovian dynamics.
These formulas not only unify the relationship between thermodynamics and the optimal transport theory for discrete and continuous cases but also generalize it to the quantum case.
arXiv Detail & Related papers (2022-06-06T15:37:59Z) - Parameter-free quantum hydrodynamic theory for plasmonics: Electron
density-dependent damping rate and diffusion coefficient [10.837420913670723]
An accurate and efficient method to calculate the optical response of metallic structures with feature size in the nanoscale plays an important role.
Quantum hydrodynamic theory (QHT) provides an efficient description of the free-electron gas, where quantum effects of nonlocality and spill-out are taken into account.
We introduce a general QHT that includes diffusion to account for the broadening, which is a key problem in practical applications of surface plasmon.
arXiv Detail & Related papers (2022-01-06T06:21:05Z) - Entropy Production and the Role of Correlations in Quantum Brownian
Motion [77.34726150561087]
We perform a study on quantum entropy production, different kinds of correlations, and their interplay in the driven Caldeira-Leggett model of quantum Brownian motion.
arXiv Detail & Related papers (2021-08-05T13:11:05Z) - Linear growth of the entanglement entropy for quadratic Hamiltonians and
arbitrary initial states [11.04121146441257]
We prove that the entanglement entropy of any pure initial state of a bosonic quantum system grows linearly in time.
We discuss several applications of our results to physical systems with (weakly) interacting Hamiltonians and periodically driven quantum systems.
arXiv Detail & Related papers (2021-07-23T07:55:38Z) - Statistical mechanics of one-dimensional quantum droplets [0.0]
We study the dynamical relaxation process of modulationally unstable one-dimensional quantum droplets.
We find that the instability leads to the spontaneous formation of quantum droplets featuring multiple collisions.
arXiv Detail & Related papers (2021-02-25T15:30:30Z) - Dynamics of large deviations in the hydrodynamic limit: Non-interacting
systems [0.0]
We study the dynamics of the energy transferred across a point along a quantum chain.
We consider the transverse field Ising and harmonic chains as prototypical models of non-interacting fermionic and bosonic excitations.
arXiv Detail & Related papers (2020-07-23T16:33:58Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.