論文の概要: Few-Shot Learning by Explicit Physics Integration: An Application to Groundwater Heat Transport
- arxiv url: http://arxiv.org/abs/2507.06062v1
- Date: Tue, 08 Jul 2025 15:06:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-09 16:34:38.243525
- Title: Few-Shot Learning by Explicit Physics Integration: An Application to Groundwater Heat Transport
- Title(参考訳): 明示的な物理統合による深層学習 : 地下水熱輸送への応用
- Authors: Julia Pelzer, Corné Verburg, Alexander Heinlein, Miriam Schulte,
- Abstract要約: ローカルGlobal Convolutional Neural Network (LGCNN) アプローチが導入された。
モデルはまずランダムな入力場に基づいて系統的に解析される。
そして、このモデルは、ドイツのミュンヘン地域の現実世界の古典地図から、いくつかのカットアウトで訓練される。
- 参考スコア(独自算出の注目度): 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning methods often struggle with real-world applications in science and engineering due to limited or low-quality training data. In this work, the example of groundwater flow with heat transport is considered; this corresponds to an advection-diffusion process under heterogeneous flow conditions, that is, spatially distributed material parameters and heat sources. Classical numerical simulations are costly and challenging due to high spatio-temporal resolution requirements and large domains. While often computationally more efficient, purely data-driven surrogate models face difficulties, particularly in predicting the advection process, which is highly sensitive to input variations and involves long-range spatial interactions. Therefore, in this work, a Local-Global Convolutional Neural Network (LGCNN) approach is introduced. It combines a lightweight numerical surrogate for the transport process (global) with convolutional neural networks for the groundwater velocity and heat diffusion processes (local). With the LGCNN, a city-wide subsurface temperature field is modeled, involving a heterogeneous groundwater flow field and one hundred groundwater heat pump injection points forming interacting heat plumes over long distances. The model is first systematically analyzed based on random subsurface input fields. Then, the model is trained on a handful of cut-outs from a real-world subsurface map of the Munich region in Germany, and it scales to larger cut-outs without retraining. All datasets, our code, and trained models are published for reproducibility.
- Abstract(参考訳): 機械学習の手法は、限られたまたは低品質のトレーニングデータのために、科学や工学における現実世界の応用に苦しむことが多い。
本研究では, 熱輸送を伴う地下水流動の例を考察し, これは不均一な流れ条件下での対流拡散過程, すなわち空間分布物質パラメータと熱源に対応している。
古典的な数値シミュレーションは高時空間分解要求と大域領域のために費用がかかり難い。
計算的により効率的であるが、純粋にデータ駆動サロゲートモデルは、特に入力変動に非常に敏感で、長距離空間相互作用を伴う対流過程を予測する際に困難に直面している。
そこで本研究では,ローカル・グローバル・畳み込みニューラルネットワーク(LGCNN)のアプローチを導入する。
輸送過程(グロバル)のための軽量な数値代理と地下水速度と熱拡散過程(局所)のための畳み込みニューラルネットワークを組み合わせる。
LGCNNでは、都市全体の地下温度場をモデル化し、不均一な地下水流動場と100個の地下水ヒートポンプ注入点が長距離にわたって相互作用するヒートプルームを形成している。
このモデルはまずランダムな地下入力場に基づいて系統的に解析される。
そして、このモデルは、ドイツのミュンヘン地域の現実世界の地下マップから少数のカットアウトをトレーニングし、再トレーニングせずにより大きなカットアウトにスケールアウトする。
すべてのデータセット、私たちのコード、トレーニングされたモデルは再現性のために公開されます。
関連論文リスト
- A Neural Operator-Based Emulator for Regional Shallow Water Dynamics [5.09419041446345]
沿岸部は特に海面上昇や極端な気象現象の影響を受けやすい。
これらの地域の流体力学過程の正確なリアルタイム予測は、インフラ計画と気候適応に不可欠である。
本稿では,高次元数値解法を効率よく近似するために次元還元を用いた自己回帰型ニューラルエミュレータを提案する。
論文 参考訳(メタデータ) (2025-02-20T18:02:44Z) - Enforcing the Principle of Locality for Physical Simulations with Neural Operators [0.0]
時間依存偏微分方程式(PDE)は、物理学における局所性の原理に従って厳密に局所依存的である。
ディープラーニングアーキテクチャは、ローカルな予測を行うための情報の範囲を必然的に増やすため、ローカル依存を厳格に強制することはできない。
本稿では,局所的な予測を行うニューラル演算子の情報範囲を厳格に制限するデータ分解手法を提案する。
論文 参考訳(メタデータ) (2024-05-02T14:24:56Z) - Generative Modeling on Manifolds Through Mixture of Riemannian Diffusion Processes [57.396578974401734]
一般多様体上に生成拡散過程を構築するための原理的枠組みを導入する。
従来の拡散モデルの認知的アプローチに従う代わりに、橋梁プロセスの混合を用いて拡散過程を構築する。
混合過程を幾何学的に理解し,データ点への接する方向の重み付け平均としてドリフトを導出する。
論文 参考訳(メタデータ) (2023-10-11T06:04:40Z) - Fourier Neural Operators for Arbitrary Resolution Climate Data
Downscaling [16.890326773246414]
本稿では,フーリエニューラル演算子に基づくダウンスケーリング手法を提案する。
提案手法は, 最先端の畳み込みモデルおよび生成的対向性ダウンスケーリングモデルより有意に優れていることを示す。
全体として、我々の研究は物理過程のシミュレーションと低解像度出力のギャップを埋める。
論文 参考訳(メタデータ) (2023-05-23T18:25:08Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
最適輸送流(MIOFlow)を補間するマニフォールド補間法を提案する。
MIOFlowは、散発的なタイムポイントで撮影された静的スナップショットサンプルから、連続的な人口動態を学習する。
本手法は, 胚体分化および急性骨髄性白血病の治療から得られたscRNA-seqデータとともに, 分岐とマージによるシミュレーションデータについて検討した。
論文 参考訳(メタデータ) (2022-06-29T22:19:03Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - A Gradient-based Deep Neural Network Model for Simulating Multiphase
Flow in Porous Media [1.5791732557395552]
多孔質媒体の多相流に関する物理に制約された勾配に基づくディープニューラルネットワーク(GDNN)について述べる。
GDNNが非線型応答の非線型パターンを効果的に予測できることを実証する。
論文 参考訳(メタデータ) (2021-04-30T02:14:00Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
学習エネルギーベースモデル(EBM)の勾配流を最適化する新しい数値スキームを提案する。
フォッカー・プランク方程式から大域相対エントロピーの2階ワッサーシュタイン勾配流を導出する。
既存のスキームと比較して、ワッサーシュタイン勾配流は実データ密度を近似するより滑らかで近似的な数値スキームである。
論文 参考訳(メタデータ) (2019-10-31T02:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。