論文の概要: seMCD: Sequentially implemented Monte Carlo depth computation with statistical guarantees
- arxiv url: http://arxiv.org/abs/2507.06227v1
- Date: Tue, 08 Jul 2025 17:59:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-09 16:34:38.441114
- Title: seMCD: Sequentially implemented Monte Carlo depth computation with statistical guarantees
- Title(参考訳): seMCD: 統計的保証を伴うモンテカルロ深度計算を逐次実施
- Authors: Felix Gnettner, Claudia Kirch, Alicia Nieto-Reyes,
- Abstract要約: 統計的深度関数は 1 より大きい次元の空間において中心外順序を与える。
このような深度関数の数値的な評価は、比較的低次元であっても、計算的に禁じることができる。
本稿では,モンテカルロ法を用いて,理論的,実証的,深度関数および関連する量の計算を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Statistical depth functions provide center-outward orderings in spaces of dimension larger than one, where a natural ordering does not exist. The numerical evaluation of such depth functions can be computationally prohibitive, even for relatively low dimensions. We present a novel sequentially implemented Monte Carlo methodology for the computation of, theoretical and empirical, depth functions and related quantities (seMCD), that outputs an interval, a so-called seMCD-bucket, to which the quantity of interest belongs with a high probability prespecified by the user. For specific classes of depth functions, we adapt algorithms from sequential testing, providing finite-sample guarantees. For depth functions dependent on unknown distributions, we offer asymptotic guarantees using non-parametric statistical methods. In contrast to plain-vanilla Monte Carlo methodology the number of samples required in the algorithm is random but typically much smaller than standard choices suggested in the literature. The seMCD method can be applied to various depth functions, covering multivariate and functional spaces. We demonstrate the efficiency and reliability of our approach through empirical studies, highlighting its applicability in outlier or anomaly detection, classification, and depth region computation. In conclusion, the seMCD-algorithm can achieve accurate depth approximations with few Monte Carlo samples while maintaining rigorous statistical guarantees.
- Abstract(参考訳): 統計的深度関数は、自然順序が存在しない1より大きい次元の空間において中心外順序を与える。
このような深度関数の数値的な評価は、比較的低次元であっても、計算的に禁じることができる。
本稿では,モンテカルロ法(SeMCD-bucket)を用いて,利用者が予め指定した高確率の利害関係を持つ区間(seMCD-bucket)を出力する,理論的,経験的,深度関数および関連する量の計算を行う。
深度関数の特定のクラスに対して、逐次テストからアルゴリズムを適用し、有限サンプル保証を提供する。
未知分布に依存する深度関数に対しては、非パラメトリック統計法を用いて漸近保証を提供する。
モンテカルロ法とは対照的に、アルゴリズムに必要なサンプルの数はランダムであるが、典型的には文献で提案される標準選択よりもはるかに小さい。
seMCD法は多変量空間と関数空間をカバーする様々な深度関数に適用できる。
実験的な研究を通じて,本手法の効率性と信頼性を実証し,異常検出,分類,深度領域計算への適用性を強調した。
結論として、SeMCD-algorithmは厳密な統計的保証を維持しながら、モンテカルロサンプルの少ない精度の深さ近似を達成できる。
関連論文リスト
- On Policy Evaluation Algorithms in Distributional Reinforcement Learning [0.0]
分散強化学習(DRL)による政策評価問題における未知の回帰分布を効率的に近似する新しいアルゴリズムのクラスを導入する。
提案したアルゴリズムの単純な例では、ワッサーシュタインとコルモゴロフ-スミルノフ距離の両方において誤差境界を証明する。
確率密度関数を持つ戻り分布の場合、アルゴリズムはこれらの密度を近似し、誤差境界は上限ノルム内で与えられる。
論文 参考訳(メタデータ) (2024-07-19T10:06:01Z) - Bayesian Frequency Estimation Under Local Differential Privacy With an Adaptive Randomized Response Mechanism [0.4604003661048266]
本稿では,局所的な差分プライバシーの下でのカテゴリー分布の適応的オンラインベイズ推定アルゴリズムAdOBEst-LDPを提案する。
ベイズ推定によって過去の民営化データにサブセット選択プロセスを適用することにより、アルゴリズムは将来の民営化データの有用性を向上させる。
論文 参考訳(メタデータ) (2024-05-11T13:59:52Z) - Inference in Randomized Least Squares and PCA via Normality of Quadratic Forms [19.616162116973637]
ランダムなスケッチや投影による統計的推測のための統一手法を開発した。
この手法は固定データセット(すなわちデータ条件)に適用され、ランダム性だけがランダム化アルゴリズムによるものである。
論文 参考訳(メタデータ) (2024-04-01T04:35:44Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap は、ワーッサーシュタイン空間の低次元構造を明らかにするための計算可能なアルゴリズムである。
我々は,LOT Wassmapが正しい埋め込みを実現し,サンプルサイズの増加とともに品質が向上することを示す。
また、LOT Wassmapがペア距離計算に依存するアルゴリズムと比較して計算コストを大幅に削減することを示す。
論文 参考訳(メタデータ) (2023-02-14T22:12:16Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - The Normalized Cross Density Functional: A Framework to Quantify
Statistical Dependence for Random Processes [6.625320950808605]
正規化クロス密度(NCD)と呼ばれる正定関数を用いて、2つのランダムプロセス(r.p.)間の統計的依存を測定する新しい手法を提案する。
NCDは2つのr.p.の確率密度関数から直接導出され、データ依存ヒルベルト空間、正規化クロス密度ヒルベルト空間(NCD-HS)を構成する。
我々は,FMCAがNCDの固有値と固有関数を直接実現したことを数学的に証明する。
論文 参考訳(メタデータ) (2022-12-09T02:12:41Z) - Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency [111.83670279016599]
部分観察決定過程(POMDP)の無限観測および状態空間を用いた強化学習について検討した。
線形構造をもつPOMDPのクラスに対する部分可観測性と関数近似の最初の試みを行う。
論文 参考訳(メタデータ) (2022-04-20T21:15:38Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
無限水平マルコフ決定過程(MDP)における最適政策学習の問題を考える。
リプシッツ連続関数を用いた凸プログラミング問題に対してミラー・ディクセントの変種が提案されている。
このアルゴリズムを一般の場合において解析し,提案手法の動作中に誤差を蓄積しない収束率の推定値を得る。
論文 参考訳(メタデータ) (2021-02-27T19:28:39Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
オンラインデータストリームによって生成される有限個の点からなるランダムな確率測度に対する人口推定バリセンタ問題を考察する。
本稿では,この問題の構造を用いて,凸凹型サドル点再構成を行う。
ランダム確率測度の分布が離散的な場合、最適化アルゴリズムを提案し、その複雑性を推定する。
論文 参考訳(メタデータ) (2020-06-11T19:40:38Z) - Approximate MMAP by Marginal Search [78.50747042819503]
本稿では,グラフィカルモデルにおける最小値MAPクエリの戦略を提案する。
提案した信頼度尺度は,アルゴリズムが正確であるインスタンスを適切に検出するものである。
十分に高い信頼度を得るために、アルゴリズムは正確な解を与えるか、正確な解からハミング距離が小さい近似を与える。
論文 参考訳(メタデータ) (2020-02-12T07:41:13Z) - Mean shift cluster recognition method implementation in the nested
sampling algorithm [0.0]
ネストサンプリングはベイズ証拠と後続パラメータ確率分布の計算に有効なアルゴリズムである。
本稿では,ランダムウォークサーチアルゴリズムに実装された平均シフトクラスタ認識法に基づく新しい解を提案する。
論文 参考訳(メタデータ) (2020-01-31T15:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。