Denoising Multi-Beta VAE: Representation Learning for Disentanglement and Generation
- URL: http://arxiv.org/abs/2507.06613v1
- Date: Wed, 09 Jul 2025 07:29:41 GMT
- Title: Denoising Multi-Beta VAE: Representation Learning for Disentanglement and Generation
- Authors: Anshuk Uppal, Yuhta Takida, Chieh-Hsin Lai, Yuki Mitsufuji,
- Abstract summary: We propose a novel generative modeling framework that leverages a range of $beta$ values to learn multiple corresponding latent representations.<n>We introduce a non-linear diffusion model that smoothly transitions latent representations corresponding to different $beta$ values.<n>We evaluate our framework in terms of both disentanglement and generation quality.
- Score: 15.957980475573365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Disentangled and interpretable latent representations in generative models typically come at the cost of generation quality. The $\beta$-VAE framework introduces a hyperparameter $\beta$ to balance disentanglement and reconstruction quality, where setting $\beta > 1$ introduces an information bottleneck that favors disentanglement over sharp, accurate reconstructions. To address this trade-off, we propose a novel generative modeling framework that leverages a range of $\beta$ values to learn multiple corresponding latent representations. First, we obtain a slew of representations by training a single variational autoencoder (VAE), with a new loss function that controls the information retained in each latent representation such that the higher $\beta$ value prioritize disentanglement over reconstruction fidelity. We then, introduce a non-linear diffusion model that smoothly transitions latent representations corresponding to different $\beta$ values. This model denoises towards less disentangled and more informative representations, ultimately leading to (almost) lossless representations, enabling sharp reconstructions. Furthermore, our model supports sample generation without input images, functioning as a standalone generative model. We evaluate our framework in terms of both disentanglement and generation quality. Additionally, we observe smooth transitions in the latent spaces with respect to changes in $\beta$, facilitating consistent manipulation of generated outputs.
Related papers
- Representation Entanglement for Generation:Training Diffusion Transformers Is Much Easier Than You Think [56.539823627694304]
REPA and its variants effectively mitigate training challenges in diffusion models by incorporating external visual representations from pretrained models.<n>We argue that the external alignment, which is absent during the entire denoising inference process, falls short of fully harnessing the potential of discriminative representations.<n>We propose Representation Entanglement for Generation (REG), which entangles low-level image latents with a single high-level class token from pretrained foundation models for denoising.
arXiv Detail & Related papers (2025-07-02T08:29:18Z) - D2C: Unlocking the Potential of Continuous Autoregressive Image Generation with Discrete Tokens [80.75893450536577]
We propose D2C, a novel two-stage method to enhance model generation capacity.<n>In the first stage, the discrete-valued tokens representing coarse-grained image features are sampled by employing a small discrete-valued generator.<n>In the second stage, the continuous-valued tokens representing fine-grained image features are learned conditioned on the discrete token sequence.
arXiv Detail & Related papers (2025-03-21T13:58:49Z) - $α$-TCVAE: On the relationship between Disentanglement and Diversity [21.811889512977924]
In this work, we introduce $alpha$-TCVAE, a variational autoencoder optimized using a novel total correlation (TC) lower bound.
We present quantitative analyses that support the idea that disentangled representations lead to better generative capabilities and diversity.
Our results demonstrate that $alpha$-TCVAE consistently learns more disentangled representations than baselines and generates more diverse observations.
arXiv Detail & Related papers (2024-11-01T13:50:06Z) - How to train your VAE [0.0]
Variational Autoencoders (VAEs) have become a cornerstone in generative modeling and representation learning within machine learning.
This paper explores interpreting the Kullback-Leibler (KL) Divergence, a critical component within the Evidence Lower Bound (ELBO)
The proposed method redefines the ELBO with a mixture of Gaussians for the posterior probability, introduces a regularization term, and employs a PatchGAN discriminator to enhance texture realism.
arXiv Detail & Related papers (2023-09-22T19:52:28Z) - DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior [70.46245698746874]
We present DiffBIR, a general restoration pipeline that could handle different blind image restoration tasks.
DiffBIR decouples blind image restoration problem into two stages: 1) degradation removal: removing image-independent content; 2) information regeneration: generating the lost image content.
In the first stage, we use restoration modules to remove degradations and obtain high-fidelity restored results.
For the second stage, we propose IRControlNet that leverages the generative ability of latent diffusion models to generate realistic details.
arXiv Detail & Related papers (2023-08-29T07:11:52Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
We develop a novel training method for generative models, such as Generative Adversarial Networks and Normalizing Flows.
We show that achieving a specified precision-recall trade-off corresponds to minimizing a unique $f$-divergence from a family we call the textitPR-divergences.
Our approach improves the performance of existing state-of-the-art models like BigGAN in terms of either precision or recall when tested on datasets such as ImageNet.
arXiv Detail & Related papers (2023-05-30T10:07:17Z) - The Transitive Information Theory and its Application to Deep Generative
Models [0.0]
Variational Autoencoder (VAE) could be pushed in two opposite directions.
Existing methods narrow the issues to the rate-distortion trade-off between compression and reconstruction.
We develop a system that learns a hierarchy of disentangled representation together with a mechanism for recombining the learned representation for generalization.
arXiv Detail & Related papers (2022-03-09T22:35:02Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - High-Fidelity Synthesis with Disentangled Representation [60.19657080953252]
We propose an Information-Distillation Generative Adrial Network (ID-GAN) for disentanglement learning and high-fidelity synthesis.
Our method learns disentangled representation using VAE-based models, and distills the learned representation with an additional nuisance variable to the separate GAN-based generator for high-fidelity synthesis.
Despite the simplicity, we show that the proposed method is highly effective, achieving comparable image generation quality to the state-of-the-art methods using the disentangled representation.
arXiv Detail & Related papers (2020-01-13T14:39:40Z) - On the Difference Between the Information Bottleneck and the Deep
Information Bottleneck [81.89141311906552]
We revisit the Deep Variational Information Bottleneck and the assumptions needed for its derivation.
We show how to circumvent this limitation by optimising a lower bound for $I(T;Y)$ for which only the latter Markov chain has to be satisfied.
arXiv Detail & Related papers (2019-12-31T18:31:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.