論文の概要: Segmentation Regularized Training for Multi-Domain Deep Learning Registration applied to MR-Guided Prostate Cancer Radiotherapy
- arxiv url: http://arxiv.org/abs/2507.06966v1
- Date: Wed, 09 Jul 2025 15:55:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-10 17:37:43.650761
- Title: Segmentation Regularized Training for Multi-Domain Deep Learning Registration applied to MR-Guided Prostate Cancer Radiotherapy
- Title(参考訳): MRガイド下前立腺癌放射線治療への応用
- Authors: Sudharsan Madhavan, Chengcheng Gui, Lando Bosma, Josiah Simeth, Jue Jiang, Nicolas Cote, Nima Hassan Rezaeian, Himanshu Nagar, Victoria Brennan, Neelam Tyagi, Harini Veeraraghavan,
- Abstract要約: MR誘導適応放射線治療における輪郭伝播と線量蓄積には正確な変形性画像登録(DIR)が必要である。
本研究は, ドメイン不変MR-MR登録のためのディープラーニングDIR法を訓練し, 評価した。
- 参考スコア(独自算出の注目度): 4.196851975513091
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Background: Accurate deformable image registration (DIR) is required for contour propagation and dose accumulation in MR-guided adaptive radiotherapy (MRgART). This study trained and evaluated a deep learning DIR method for domain invariant MR-MR registration. Methods: A progressively refined registration and segmentation (ProRSeg) method was trained with 262 pairs of 3T MR simulation scans from prostate cancer patients using weighted segmentation consistency loss. ProRSeg was tested on same- (58 pairs), cross- (72 1.5T MR Linac pairs), and mixed-domain (42 MRSim-MRL pairs) datasets for contour propagation accuracy of clinical target volume (CTV), bladder, and rectum. Dose accumulation was performed for 42 patients undergoing 5-fraction MRgART. Results: ProRSeg demonstrated generalization for bladder with similar Dice Similarity Coefficients across domains (0.88, 0.87, 0.86). For rectum and CTV, performance was domain-dependent with higher accuracy on cross-domain MRL dataset (DSCs 0.89) versus same-domain data. The model's strong cross-domain performance prompted us to study the feasibility of using it for dose accumulation. Dose accumulation showed 83.3% of patients met CTV coverage (D95 >= 40.0 Gy) and bladder sparing (D50 <= 20.0 Gy) constraints. All patients achieved minimum mean target dose (>40.4 Gy), but only 9.5% remained under upper limit (<42.0 Gy). Conclusions: ProRSeg showed reasonable multi-domain MR-MR registration performance for prostate cancer patients with preliminary feasibility for evaluating treatment compliance to clinical constraints.
- Abstract(参考訳): 背景:MR誘導適応放射線療法(MRgART)における輪郭伝播と線量蓄積には正確な変形性画像登録(DIR)が必要である。
本研究は, ドメイン不変MR-MR登録のためのディープラーニングDIR法を訓練し, 評価した。
方法: 重み付きセグメンテーション整合性損失を用いた前立腺癌患者から262対の3T MRスキャンを用いて, 段階的に改良された登録・セグメンテーション(ProRSeg)法を訓練した。
臨床ターゲット容積(CTV),膀胱,直腸の輪郭伝播精度について,ProRSegを同一(58対),クロス(72対),混合ドメイン(42組),MRL(42組),MRL(42組),MRL(42組),MRL(42組),MRL(42組)で試験した。
5-fraction MRgARTを施行した42例に対してドーズ蓄積術を施行した。
結果: ProRSegは類似したDice類似係数(0.88, 0.87, 0.86)の膀胱の一般化を示した。
直腸とCTVでは、クロスドメインMRLデータセット(DSCs 0.89)と同一ドメインデータに対して、高い精度でドメインに依存していた。
モデルが強いクロスドメイン性能を持つことから, 線量蓄積の可能性について検討した。
CTVは83.3%(D95 >=40.0Gy)、膀胱スペーリングは20.0Gy(D50 <=20.0Gy)であった。
全ての患者は最小目標用量 (>40.4 Gy) を達成したが、上限 (^<42.0 Gy) は9.5%にとどまった。
結論: ProRSeg は前立腺癌患者に対して適切な多領域MR-MR 登録性能を示した。
関連論文リスト
- Multimodal MRI-Ultrasound AI for Prostate Cancer Detection Outperforms Radiologist MRI Interpretation: A Multi-Center Study [2.493694664727448]
前立腺病変に対するMRI(pre-biopsy magnetic resonance imaging)の使用が増えている。
MRIで検出された病変は生検中に経直腸超音波(TRUS)画像にマッピングされなければならず、臨床上有意な前立腺癌(CsPCa)を発症する。
本研究では、MRIとTRUS画像シーケンスを統合したマルチモーダルAIフレームワークを体系的に評価し、CsPCa識別を向上する。
論文 参考訳(メタデータ) (2025-01-31T20:04:20Z) - Variational U-Net with Local Alignment for Joint Tumor Extraction and Registration (VALOR-Net) of Breast MRI Data Acquired at Two Different Field Strengths [0.43163184307789293]
多次元乳房MRIは腫瘍の診断、特徴付け、治療計画を改善する可能性がある。
3Tや7Tのような異なるフィールド強度で取得された画像の正確なアライメントとデライン化は、依然として困難な研究課題である。
提案手法は, 異なる磁場強度で取得したMRIデータの関節腫瘍セグメント化とMRIデータの登録を可能とすることができる。
論文 参考訳(メタデータ) (2025-01-23T14:15:54Z) - Multi-Model Ensemble Approach for Accurate Bi-Atrial Segmentation in LGE-MRI of Atrial Fibrillation Patients [3.676588766498097]
心房細動(AF)は、心臓不整脈の最も多い形態であり、死亡率と死亡率の増加と関連している。
この研究は、Unet、ResNet、EfficientNet、VGGを含む複数の機械学習モデルを統合するアンサンブルアプローチを示し、LGE-MRIデータから自動両房セグメンテーションを実行する。
論文 参考訳(メタデータ) (2024-09-24T13:33:46Z) - TRUSTED: The Paired 3D Transabdominal Ultrasound and CT Human Data for
Kidney Segmentation and Registration Research [42.90853857929316]
腹部超音波(US)データを用いたIMIR(Inter-modal Image registration)と画像分割は,多くの重要な臨床応用例である。
ヒト48例の経腹部3DUSとCT腎像を組み合わせたTRUSTED(Tridimensional Ultra Sound TomodEnsitometrie dataset)を提案する。
論文 参考訳(メタデータ) (2023-10-19T11:09:50Z) - A new method using deep learning to predict the response to cardiac
resynchronization therapy [5.220522498181878]
本研究の目的は、臨床変数、心電図(ECG)の特徴、および心機能の評価から得られるパラメータと、ゲートSPECT MPIの極地図を組み合わせることである。
DLモデルは、事前訓練されたVGG16モジュールと多層パーセプトロンを組み合わせることで構築された。
DLモデルは平均AUC(0.83)、精度(0.73)、感度(0.76)、特異性(0.69)がMLモデルとガイドライン基準を上回ることを示した。
論文 参考訳(メタデータ) (2023-05-04T00:51:42Z) - A self-supervised learning strategy for postoperative brain cavity
segmentation simulating resections [46.414990784180546]
畳み込みニューラルネットワーク(CNN)は最先端の画像セグメンテーション技術である。
CNNはトレーニングに大量の注釈付きデータセットを必要とする。
自己教師型学習戦略は、トレーニングにラベルのないデータを活用することができる。
論文 参考訳(メタデータ) (2021-05-24T12:27:06Z) - Comparison of Machine Learning Classifiers to Predict Patient Survival
and Genetics of GBM: Towards a Standardized Model for Clinical Implementation [44.02622933605018]
放射線モデルは、グリオ芽腫(GBM)の結果予測のための臨床データを上回ることが示されています。
GBM患者の生存率(OS),IDH変異,O-6-メチルグアニン-DNA-メチルトランスフェラーゼ(MGMT)プロモーターメチル化,EGFR(EGFR)VII増幅,Ki-67発現の9種類の機械学習分類器を比較した。
xgb は os (74.5%), ab for idh 変異 (88%), mgmt メチル化 (71,7%), ki-67 発現 (86,6%), egfr増幅 (81。
論文 参考訳(メタデータ) (2021-02-10T15:10:37Z) - COVID-MTL: Multitask Learning with Shift3D and Random-weighted Loss for
Automated Diagnosis and Severity Assessment of COVID-19 [39.57518533765393]
新型コロナウイルスの正確かつ効果的な評価を支援する自動化方法が緊急に必要である。
我々は,放射線学とNATの両方において,自動かつ同時検出と重症度評価が可能なエンドツーエンドマルチタスク学習フレームワーク(COVID-MTL)を提案する。
論文 参考訳(メタデータ) (2020-12-10T08:30:46Z) - Accurate Prostate Cancer Detection and Segmentation on Biparametric MRI
using Non-local Mask R-CNN with Histopathological Ground Truth [0.0]
我々は,bp-MRIにおける前立腺内病変の検出とセグメンテーションを改善するため,ディープラーニングモデルを開発した。
前立腺切除術による脱線をMRIでトレーニングした。
前立腺切除術をベースとした非局所的なMask R-CNNは、微調整と自己訓練により、すべての評価基準を大幅に改善した。
論文 参考訳(メタデータ) (2020-10-28T21:07:09Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。