Synergistic Localization and Sensing in MIMO-OFDM Systems via Mixed-Integer Bilevel Learning
- URL: http://arxiv.org/abs/2507.07118v1
- Date: Mon, 07 Jul 2025 06:34:22 GMT
- Title: Synergistic Localization and Sensing in MIMO-OFDM Systems via Mixed-Integer Bilevel Learning
- Authors: Zelin Zhu, Kai Yang, Rui Zhang,
- Abstract summary: High-performance localization and sensing systems are critical for network efficiency and emerging intelligent applications.<n>Integrating channel state information (CSI) with deep learning has recently emerged as a promising solution.<n>This work aims to jointly model and optimize localization and sensing tasks to harness their potential synergy.
- Score: 7.475378160764602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wireless localization and sensing technologies are essential in modern wireless networks, supporting applications in smart cities, the Internet of Things (IoT), and autonomous systems. High-performance localization and sensing systems are critical for both network efficiency and emerging intelligent applications. Integrating channel state information (CSI) with deep learning has recently emerged as a promising solution. Recent works have leveraged the spatial diversity of multiple input multiple output (MIMO) systems and the frequency granularity of orthogonal frequency division multiplexing (OFDM) waveforms to improve spatial resolution. Nevertheless, the joint modeling of localization and sensing under the high-dimensional CSI characteristics of MIMO-OFDM systems remains insufficiently investigated. This work aims to jointly model and optimize localization and sensing tasks to harness their potential synergy. We first formulate localization and sensing as a mixed-integer bilevel deep learning problem and then propose a novel stochastic proximal gradient-based mixed-integer bilevel optimization (SPG-MIBO) algorithm. SPG-MIBO is well-suited for high-dimensional and large-scale datasets, leveraging mini-batch training at each step for computational and memory efficiency. The algorithm is also supported by theoretical convergence guarantees. Extensive experiments on multiple datasets validate its effectiveness and highlight the performance gains from joint localization and sensing optimization.
Related papers
- DNN-Based Precoding in RIS-Aided mmWave MIMO Systems With Practical Phase Shift [56.04579258267126]
This paper investigates maximizing the throughput of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems with obstructed direct communication paths.<n>A reconfigurable intelligent surface (RIS) is employed to enhance transmissions, considering mmWave characteristics related to line-of-sight (LoS) and multipath effects.<n>Deep neural network (DNN) is developed to facilitate faster codeword selection.
arXiv Detail & Related papers (2025-07-03T17:35:06Z) - Large Language Model-Driven Distributed Integrated Multimodal Sensing and Semantic Communications [5.646293779615063]
We propose a novel large language model (LLM)-driven distributed integrated multimodal sensing and semantic communication framework.<n>Specifically, our system consists of multiple collaborative sensing devices equipped with RF and camera modules.<n> evaluations on a synthetic multi-view RF-visual dataset generated by the Genesis simulation engine show that LLM-DiSAC achieves a good performance.
arXiv Detail & Related papers (2025-05-20T08:00:00Z) - Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
We propose an efficient transformed Gaussian process state-space model (ETGPSSM) for scalable and flexible modeling of high-dimensional, non-stationary dynamical systems.<n>Specifically, our ETGPSSM integrates a single shared GP with input-dependent normalizing flows, yielding an expressive implicit process prior that captures complex, non-stationary transition dynamics.<n>Our ETGPSSM outperforms existing GPSSMs and neural network-based SSMs in terms of computational efficiency and accuracy.
arXiv Detail & Related papers (2025-03-24T03:19:45Z) - A Low-Complexity Plug-and-Play Deep Learning Model for Massive MIMO Precoding Across Sites [5.896656636095934]
MMIMO technology has transformed wireless communication by enhancing spectral efficiency and network capacity.<n>This paper proposes a novel deep learning-based mMIMO precoder to tackle the complexity challenges of existing approaches.
arXiv Detail & Related papers (2025-02-12T20:02:36Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
arXiv Detail & Related papers (2023-10-11T07:30:37Z) - Enabling Deep Learning-based Physical-layer Secret Key Generation for
FDD-OFDM Systems in Multi-Environments [27.47842642468537]
This paper formulates the PKG problem in multiple environments as a learning-based problem.
We propose deep transfer learning (DTL) and meta-learning-based channel feature mapping algorithms for key generation.
arXiv Detail & Related papers (2022-11-06T09:24:04Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system.
Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively.
arXiv Detail & Related papers (2022-11-01T14:16:05Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation [10.775558382613077]
Channel estimation and beamforming play critical roles in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
We propose a deep learning-based approach that directly optimize the beamformers at the base station according to the received uplink pilots.
A neural calibration method is proposed to improve the scalability of the end-to-end design.
arXiv Detail & Related papers (2021-08-03T14:26:14Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z) - Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems
Exploiting Deep Reinforcement Learning [21.770491711632832]
The reconfigurable intelligent surface (RIS) has been speculated as one of the key enabling technologies for the future six generation (6G) wireless communication systems.
In this paper, we investigate the joint design of transmit beamforming matrix at the base station and the phase shift matrix at the RIS, by leveraging recent advances in deep reinforcement learning (DRL)
The proposed algorithm is not only able to learn from the environment and gradually improve its behavior, but also obtains the comparable performance compared with two state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-02-24T04:28:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.