DpDNet: An Dual-Prompt-Driven Network for Universal PET-CT Segmentation
- URL: http://arxiv.org/abs/2507.07126v1
- Date: Tue, 08 Jul 2025 18:56:01 GMT
- Title: DpDNet: An Dual-Prompt-Driven Network for Universal PET-CT Segmentation
- Authors: Xinglong Liang, Jiaju Huang, Luyi Han, Tianyu Zhang, Xin Wang, Yuan Gao, Chunyao Lu, Lishan Cai, Tao Tan, Ritse Mann,
- Abstract summary: PET-CT lesion segmentation is challenging due to noise sensitivity, small and variable lesion morphology, and interference from physiological high-metabolic signals.<n>We propose DpDNet, a Dual-Prompt-Driven network that incorporates specific prompts to capture cancer-specific features and common prompts to retain shared knowledge.<n> Experiments on a PET-CT dataset with four cancer types show that DpDNet outperforms state-of-the-art models.
- Score: 15.081013365050362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: PET-CT lesion segmentation is challenging due to noise sensitivity, small and variable lesion morphology, and interference from physiological high-metabolic signals. Current mainstream approaches follow the practice of one network solving the segmentation of multiple cancer lesions by treating all cancers as a single task. However, this overlooks the unique characteristics of different cancer types. Considering the specificity and similarity of different cancers in terms of metastatic patterns, organ preferences, and FDG uptake intensity, we propose DpDNet, a Dual-Prompt-Driven network that incorporates specific prompts to capture cancer-specific features and common prompts to retain shared knowledge. Additionally, to mitigate information forgetting caused by the early introduction of prompts, prompt-aware heads are employed after the decoder to adaptively handle multiple segmentation tasks. Experiments on a PET-CT dataset with four cancer types show that DpDNet outperforms state-of-the-art models. Finally, based on the segmentation results, we calculated MTV, TLG, and SUVmax for breast cancer survival analysis. The results suggest that DpDNet has the potential to serve as a valuable tool for personalized risk stratification, supporting clinicians in optimizing treatment strategies and improving outcomes. Code is available at https://github.com/XinglongLiang08/DpDNet.
Related papers
- Cancer-Net PCa-Seg: Benchmarking Deep Learning Models for Prostate Cancer Segmentation Using Synthetic Correlated Diffusion Imaging [65.83291923029985]
Prostate cancer (PCa) is the most prevalent cancer among men in the United States, accounting for nearly 300,000 cases, 29% of all diagnoses and 35,000 total deaths in 2024.<n>Traditional screening methods such as prostate-specific antigen (PSA) testing and magnetic resonance imaging (MRI) have been pivotal in diagnosis, but have faced limitations in specificity and generalizability.<n>We employ several state-of-the-art deep learning models, including U-Net, SegResNet, Swin UNETR, Attention U-Net, and LightM-UNet, to segment prostate glands from a 200 CDI$
arXiv Detail & Related papers (2025-01-15T22:23:41Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
In Canada, prostate cancer is the most common form of cancer in men and accounted for 20% of new cancer cases for this demographic in 2022.
There has been significant interest in the development of deep neural networks for prostate cancer diagnosis, prognosis, and treatment planning using diffusion weighted imaging (DWI) data.
In this study, we explore the efficacy of latent diffusion for generating realistic prostate DWI data through the introduction of an anatomic-conditional controlled latent diffusion strategy.
arXiv Detail & Related papers (2023-11-30T15:11:03Z) - Enhancing Prostate Cancer Diagnosis with Deep Learning: A Study using
mpMRI Segmentation and Classification [0.0]
Prostate cancer (PCa) is a severe disease among men globally. It is important to identify PCa early and make a precise diagnosis for effective treatment.
Deep learning (DL) models can enhance existing clinical systems and improve patient care by locating regions of interest for physicians.
This work uses well-known DL models for the classification and segmentation of mpMRI images to detect PCa.
arXiv Detail & Related papers (2023-10-09T03:00:15Z) - A Localization-to-Segmentation Framework for Automatic Tumor
Segmentation in Whole-Body PET/CT Images [8.0523823243864]
This paper proposes a localization-to-segmentation framework (L2SNet) for precise tumor segmentation.
L2SNet first localizes the possible lesions in the lesion localization phase and then uses the location cues to shape the segmentation results in the lesion segmentation phase.
Experiments with the MII Automated Lesion in Whole-Body FDG-PET/CT challenge dataset show that our method achieved a competitive result.
arXiv Detail & Related papers (2023-09-11T13:39:15Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - ISA-Net: Improved spatial attention network for PET-CT tumor
segmentation [22.48294544919023]
We propose a deep learning segmentation method based on multimodal positron emission tomography-computed tomography (PET-CT)
We design an improved spatial attention network(ISA-Net) to increase the accuracy of PET or CT in detecting tumors.
We validated the proposed ISA-Net method on two clinical datasets, a soft tissue sarcoma(STS) and a head and neck tumor(HECKTOR) dataset.
arXiv Detail & Related papers (2022-11-04T04:15:13Z) - Segmentation of Lung Tumor from CT Images using Deep Supervision [0.8733639720576208]
Lung cancer is a leading cause of death in most countries of the world.
This paper approaches lung tumor segmentation by applying two-dimensional discrete wavelet transform (DWT) on the LOTUS dataset.
arXiv Detail & Related papers (2021-11-17T17:50:18Z) - Colorectal Cancer Segmentation using Atrous Convolution and Residual
Enhanced UNet [0.5353034688884528]
We propose a CNN-based approach, which uses atrous convolutions and residual connections besides the conventional filters.
The proposed AtResUNet was trained on the DigestPath 2019 Challenge dataset for colorectal cancer segmentation with results having a Dice Coefficient of 0.748.
arXiv Detail & Related papers (2021-03-16T19:20:20Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
We propose a simple yet effective framework, named Dual Objective Networks (DONet), to improve the skin lesion segmentation.
Our DONet adopts two symmetric decoders to produce different predictions for approaching different objectives.
To address the challenge of large variety of lesion scales and shapes in dermoscopic images, we additionally propose a recurrent context encoding module (RCEM)
arXiv Detail & Related papers (2020-08-19T06:02:46Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.