Label-Efficient Chest X-ray Diagnosis via Partial CLIP Adaptation
- URL: http://arxiv.org/abs/2507.07254v1
- Date: Wed, 09 Jul 2025 19:57:12 GMT
- Title: Label-Efficient Chest X-ray Diagnosis via Partial CLIP Adaptation
- Authors: Heet Nitinkumar Dalsania,
- Abstract summary: This paper proposes a label-efficient strategy for chest X-ray diagnosis.<n>Experiments use the NIH Chest X-ray14 dataset and a pre-trained CLIP ViT-B/32 model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern deep learning implementations for medical imaging usually rely on large labeled datasets. These datasets are often difficult to obtain due to privacy concerns, high costs, and even scarcity of cases. In this paper, a label-efficient strategy is proposed for chest X-ray diagnosis that seeks to reflect real-world hospital scenarios. The experiments use the NIH Chest X-ray14 dataset and a pre-trained CLIP ViT-B/32 model. The model is adapted via partial fine-tuning of its visual encoder and then evaluated using zero-shot and few-shot learning with 1-16 labeled examples per disease class. The tests demonstrate that CLIP's pre-trained vision-language features can be effectively adapted to few-shot medical imaging tasks, achieving over 20\% improvement in mean AUC score as compared to the zero-shot baseline. The key aspect of this work is to attempt to simulate internal hospital workflows, where image archives exist but annotations are sparse. This work evaluates a practical and scalable solution for both common and rare disease diagnosis. Additionally this research is intended for academic and experimental purposes only and has not been peer reviewed yet. All code is found at https://github.com/heet007-code/CLIP-disease-xray.
Related papers
- Interpreting Biomedical VLMs on High-Imbalance Out-of-Distributions: An Insight into BiomedCLIP on Radiology [0.0]
We analyse the limitations of BiomedCLIP when applied to a highly imbalanced, out-of-distribution medical dataset.<n>We show that the model under zero-shot settings over-predicts all labels, leading to poor precision and inter-class separability.<n>We highlight the need for careful adaptations of the models to foster reliability and applicability in a real-world setting.
arXiv Detail & Related papers (2025-06-17T02:59:42Z) - Position-Guided Prompt Learning for Anomaly Detection in Chest X-Rays [46.78926066405227]
Anomaly detection in chest X-rays is a critical task.
Recently, CLIP-based methods, pre-trained on a large number of medical images, have shown impressive performance on zero/few-shot downstream tasks.
We propose a position-guided prompt learning method to adapt the task data to the frozen CLIP-based model.
arXiv Detail & Related papers (2024-05-20T12:11:41Z) - CXR-CLIP: Toward Large Scale Chest X-ray Language-Image Pre-training [6.292642131180376]
In this paper, we tackle the lack of image-text data in chest X-ray by expanding image-label pair as image-text pair via general prompt.
We also design two contrastive losses, named ICL and TCL, for learning study-level characteristics of medical images and reports.
Our model outperforms the state-of-the-art models trained under the same conditions.
arXiv Detail & Related papers (2023-10-20T05:44:55Z) - Weakly-supervised positional contrastive learning: application to
cirrhosis classification [45.63061034568991]
Large medical imaging datasets can be cheaply annotated with low-confidence, weak labels.
Access to high-confidence labels, such as histology-based diagnoses, is rare and costly.
We propose an efficient weakly-supervised positional (WSP) contrastive learning strategy.
arXiv Detail & Related papers (2023-07-10T15:02:13Z) - Chest X-ray Image Classification: A Causal Perspective [49.87607548975686]
We propose a causal approach to address the CXR classification problem, which constructs a structural causal model (SCM) and uses the backdoor adjustment to select effective visual information for CXR classification.
Experimental results demonstrate that our proposed method outperforms the open-source NIH ChestX-ray14 in terms of classification performance.
arXiv Detail & Related papers (2023-05-20T03:17:44Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Significantly improving zero-shot X-ray pathology classification via fine-tuning pre-trained image-text encoders [50.689585476660554]
We propose a new fine-tuning strategy that includes positive-pair loss relaxation and random sentence sampling.
Our approach consistently improves overall zero-shot pathology classification across four chest X-ray datasets and three pre-trained models.
arXiv Detail & Related papers (2022-12-14T06:04:18Z) - Long-Tailed Classification of Thorax Diseases on Chest X-Ray: A New
Benchmark Study [75.05049024176584]
We present a benchmark study of the long-tailed learning problem in the specific domain of thorax diseases on chest X-rays.
We focus on learning from naturally distributed chest X-ray data, optimizing classification accuracy over not only the common "head" classes, but also the rare yet critical "tail" classes.
The benchmark consists of two chest X-ray datasets for 19- and 20-way thorax disease classification, containing classes with as many as 53,000 and as few as 7 labeled training images.
arXiv Detail & Related papers (2022-08-29T04:34:15Z) - A knee cannot have lung disease: out-of-distribution detection with
in-distribution voting using the medical example of chest X-ray
classification [58.720142291102135]
The study employed the commonly used chest X-ray classification model, CheXnet, trained on the chest X-ray 14 data set.
To detect OOD data for multi-label classification, we proposed in-distribution voting (IDV)
The proposed IDV approach trained on ID (chest X-ray 14) and OOD data (IRMA and ImageNet) achieved, on average, 0.999 OOD detection AUC across the three data sets.
arXiv Detail & Related papers (2022-08-01T18:20:36Z) - Multi-Label Generalized Zero Shot Learning for the Classification of
Disease in Chest Radiographs [0.7734726150561088]
We propose a zero shot learning network that can simultaneously predict multiple seen and unseen diseases in chest X-ray images.
The network is end-to-end trainable and requires no independent pre-training for the offline feature extractor.
Our network outperforms two strong baselines in terms of recall, precision, f1 score, and area under the receiver operating characteristic curve.
arXiv Detail & Related papers (2021-07-14T09:04:20Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - BS-Net: learning COVID-19 pneumonia severity on a large Chest X-Ray
dataset [6.5800499500032705]
We design an end-to-end deep learning architecture for predicting, on Chest X-rays images (CXR), a multi-regional score conveying the degree of lung compromise in COVID-19 patients.
We exploit a clinical dataset of almost 5,000 CXR annotated images collected in the same hospital.
Our solution outperforms single human annotators in rating accuracy and consistency.
arXiv Detail & Related papers (2020-06-08T13:55:58Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.