FLoRA: An Advanced AI-Powered Engine to Facilitate Hybrid Human-AI Regulated Learning
- URL: http://arxiv.org/abs/2507.07362v2
- Date: Fri, 11 Jul 2025 01:10:44 GMT
- Title: FLoRA: An Advanced AI-Powered Engine to Facilitate Hybrid Human-AI Regulated Learning
- Authors: Xinyu Li, Tongguang Li, Lixiang Yan, Yuheng Li, Linxuan Zhao, Mladen Raković, Inge Molenaar, Dragan Gašević, Yizhou Fan,
- Abstract summary: This paper introduces the enhanced FLoRA Engine, which incorporates advanced Generative Artificial Intelligence (GenAI) features and state-of-the-art learning analytics.<n>The FLoRA Engine offers instrumentation tools such as collaborative writing, multi-agents chatbots, and detailed learning trace logging to support dynamic, adaptive scaffolding tailored to individual needs in real time.
- Score: 6.965423433136556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: SRL, defined as learners' ability to systematically plan, monitor, and regulate their learning activities, is crucial for sustained academic achievement and lifelong learning competencies. Emerging Artificial Intelligence (AI) developments profoundly influence SRL interactions by potentially either diminishing or strengthening learners' opportunities to exercise their own regulatory skills. Recent literature emphasizes a balanced approach termed Hybrid Human-AI Regulated Learning (HHAIRL), in which AI provides targeted, timely scaffolding while preserving the learners' role as active decision-makers and reflective monitors of their learning process. Nevertheless, existing digital tools frequently fall short, lacking adaptability, focusing narrowly on isolated SRL phases, and insufficiently support meaningful human-AI interactions. In response, this paper introduces the enhanced FLoRA Engine, which incorporates advanced Generative Artificial Intelligence (GenAI) features and state-of-the-art learning analytics, explicitly grounded in SRL and HHAIRL theories. The FLoRA Engine offers instrumentation tools such as collaborative writing, multi-agents chatbot, and detailed learning trace logging to support dynamic, adaptive scaffolding tailored to individual needs in real time. We further present a summary of several research studies that provide the validations for and illustrate how these instrumentation tools can be utilized in real-world educational and experimental contexts. These studies demonstrate the effectiveness of FLoRA Engine in fostering SRL and HHAIRL, providing both theoretical insights and practical solutions for the future of AI-enhanced learning context.
Related papers
- Agentic Reinforced Policy Optimization [66.96989268893932]
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks.<n>Current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions.<n>We propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents.
arXiv Detail & Related papers (2025-07-26T07:53:11Z) - Fostering Self-Directed Growth with Generative AI: Toward a New Learning Analytics Framework [0.0]
This study introduces a novel conceptual framework integrating Generative Artificial Intelligence and Learning Analytics to cultivate Self-Directed Growth.<n>A2PL model reconceptualizes the interplay of learner aspirations, complex thinking, and self-assessment within GAI supported environments.
arXiv Detail & Related papers (2025-04-29T15:19:48Z) - Evolution of AI in Education: Agentic Workflows [2.1681971652284857]
Artificial intelligence (AI) has transformed various aspects of education.<n>Large language models (LLMs) are driving advancements in automated tutoring, assessment, and content generation.<n>To address these limitations and foster more sustainable technological practices, AI agents have emerged as a promising new avenue for educational innovation.
arXiv Detail & Related papers (2025-04-25T13:44:57Z) - Synergizing Self-Regulation and Artificial-Intelligence Literacy Towards Future Human-AI Integrative Learning [92.34299949916134]
Self-regulated learning (SRL) and Artificial-Intelligence (AI) literacy are becoming key competencies for successful human-AI interactive learning.<n>This study analyzed data from 1,704 Chinese undergraduates using clustering methods to uncover four learner groups.
arXiv Detail & Related papers (2025-03-31T13:41:21Z) - The FLoRA Engine: Using Analytics to Measure and Facilitate Learners' own Regulation Activities [6.043195170209631]
The FLoRA engine is developed to assist students, workers, and professionals in improving their self-regulated learning (SRL) skills.<n>The engine tracks learners' SRL behaviours during a learning task and provides automated scaffolding to help learners effectively regulate their learning.
arXiv Detail & Related papers (2024-12-12T23:46:20Z) - Generative AI and Its Impact on Personalized Intelligent Tutoring Systems [0.0]
Generative AI enables personalized education through dynamic content generation, real-time feedback, and adaptive learning pathways.
Report explores key applications such as automated question generation, customized feedback mechanisms, and interactive dialogue systems.
Future directions highlight the potential advancements in multimodal AI integration, emotional intelligence in tutoring systems, and the ethical implications of AI-driven education.
arXiv Detail & Related papers (2024-10-14T16:01:01Z) - Mastering the Digital Art of War: Developing Intelligent Combat Simulation Agents for Wargaming Using Hierarchical Reinforcement Learning [0.0]
dissertation proposes a comprehensive approach, including targeted observation abstractions, multi-model integration, a hybrid AI framework, and an overarching hierarchical reinforcement learning framework.
Our localized observation abstraction using piecewise linear spatial decay simplifies the RL problem, enhancing computational efficiency and demonstrating superior efficacy over traditional global observation methods.
Our hybrid AI framework synergizes RL with scripted agents, leveraging RL for high-level decisions and scripted agents for lower-level tasks, enhancing adaptability, reliability, and performance.
arXiv Detail & Related papers (2024-08-23T18:50:57Z) - Human-In-The-Loop Machine Learning for Safe and Ethical Autonomous Vehicles: Principles, Challenges, and Opportunities [33.853994070508485]
We focus on Curriculum Learning (CL), Human-In-The-Loop Reinforcement Learning (HITL-RL), Active Learning (AL), and ethical principles.
In CL, human experts systematically train ML models by starting with simple tasks and gradually progressing to more difficult ones.
HITL-RL significantly enhances the RL process by incorporating human input through techniques like reward shaping, action injection, and interactive learning.
AL streamlines the annotation process by targeting specific instances that need to be labeled with human oversight.
arXiv Detail & Related papers (2024-08-22T17:02:29Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
This work explores the development of a full-fledged intelligent tutoring system powered by state-of-the-art large language models (LLMs)
The system is into three inter-connected core processes-interaction, reflection, and reaction.
Each process is implemented by chaining LLM-powered tools along with dynamically updated memory modules.
arXiv Detail & Related papers (2023-09-15T02:42:03Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions.
By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies.
arXiv Detail & Related papers (2022-11-27T13:07:14Z) - Autonomous Reinforcement Learning: Formalism and Benchmarking [106.25788536376007]
Real-world embodied learning, such as that performed by humans and animals, is situated in a continual, non-episodic world.
Common benchmark tasks in RL are episodic, with the environment resetting between trials to provide the agent with multiple attempts.
This discrepancy presents a major challenge when attempting to take RL algorithms developed for episodic simulated environments and run them on real-world platforms.
arXiv Detail & Related papers (2021-12-17T16:28:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.