論文の概要: Galerkin-ARIMA: A Two-Stage Polynomial Regression Framework for Fast Rolling One-Step-Ahead Forecasting
- arxiv url: http://arxiv.org/abs/2507.07469v1
- Date: Thu, 10 Jul 2025 06:53:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-11 16:40:15.297905
- Title: Galerkin-ARIMA: A Two-Stage Polynomial Regression Framework for Fast Rolling One-Step-Ahead Forecasting
- Title(参考訳): Galerkin-ARIMA: 高速圧延ワンステップアヘッド予測のための2段階多項式回帰フレームワーク
- Authors: Haojie Liu, Zihan Lin,
- Abstract要約: ARIMAのような時系列モデルは、予測に広く使われているが、線形仮定と高い計算コストに限られている。
本稿では,ARIMAのAR成分を一般化したGalerkin-ARIMAを提案する。
これにより、モデルがタグ付けされた値の非線形依存関係をキャプチャし、MA成分とガウス雑音の仮定を保持することができる。
- 参考スコア(独自算出の注目度): 9.953821298617473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time-series models like ARIMA remain widely used for forecasting but limited to linear assumptions and high computational cost in large and complex datasets. We propose Galerkin-ARIMA that generalizes the AR component of ARIMA and replace it with a flexible spline-based function estimated by Galerkin projection. This enables the model to capture nonlinear dependencies in lagged values and retain the MA component and Gaussian noise assumption. We derive a closed-form OLS estimator for the Galerkin coefficients and show the model is asymptotically unbiased and consistent under standard conditions. Our method bridges classical time-series modeling and nonparametric regression, which offering improved forecasting performance and computational efficiency.
- Abstract(参考訳): ARIMAのような時系列モデルは、予測に広く使われているが、大規模で複雑なデータセットでは線形仮定と高い計算コストに制限されている。
本稿では,ARIMAのAR成分を一般化したGalerkin-ARIMAを提案する。
これにより、モデルがタグ付けされた値の非線形依存関係をキャプチャし、MA成分とガウス雑音の仮定を保持することができる。
ガレルキン係数に対する閉形式OLS推定器を導出し、そのモデルが標準条件下で漸近的に偏りがなく一貫したことを示す。
本手法は古典的時系列モデリングと非パラメトリック回帰を橋渡しし,予測性能と計算効率を向上する。
関連論文リスト
- Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
独自の予測と潜在的にノイズの多いラベルを使ってモデルをトレーニングすることは、モデルパフォーマンスを改善するためのよく知られた戦略である。
本稿では,モデルの予測と提供ラベルを最適に組み合わせる方法について論じる。
我々の主な貢献は、現在のモデルの予測と与えられたラベルを組み合わせたベイズ最適集約関数の導出である。
論文 参考訳(メタデータ) (2025-05-21T07:16:44Z) - Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
SRモデルの性能法則は,モデルの性能とデータ品質の関係を理論的に調査し,モデル化することを目的としている。
データ品質を評価するために、従来のデータ量メトリクスと比較して、より曖昧なアプローチを示すために、近似エントロピー(ApEn)を提案する。
論文 参考訳(メタデータ) (2024-11-30T10:56:30Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - Probabilistic Traffic Forecasting with Dynamic Regression [15.31488551912888]
本稿では,交通予測における誤り過程の学習を取り入れた動的回帰(DR)フレームワークを提案する。
このフレームワークは、行列構造自己回帰(AR)モデルを用いてベースモデルのエラー系列をモデル化することにより、時間独立の仮定を緩和する。
新たに設計された損失関数は、非等方的誤差項の確率に基づいており、モデルがベースモデルの元の出力を保持しながら確率的予測を生成することができる。
論文 参考訳(メタデータ) (2023-01-17T01:12:44Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
関数型隠れ統計モデル(f-HD)のためのペナル化極大推定器(PMLE)に基づく新しいモデル選択アルゴリズムを提案する。
このアルゴリズムは反復最適化に基づいており、適応最小限の収縮・セレクタ演算子(GMSOLAS)ペナルティ関数を用いており、これは不給付のf-HD最大線量推定器によって得られる。
論文 参考訳(メタデータ) (2022-08-10T19:17:45Z) - Low-variance estimation in the Plackett-Luce model via quasi-Monte Carlo
sampling [58.14878401145309]
PLモデルにおいて,より標本効率の高い予測値を生成するための新しい手法を開発した。
Amazon MusicのリアルなレコメンデーションデータとYahooの学習からランクへの挑戦を理論的にも実証的にも使用しています。
論文 参考訳(メタデータ) (2022-05-12T11:15:47Z) - Spike-and-Slab Generalized Additive Models and Scalable Algorithms for
High-Dimensional Data [0.0]
本稿では,高次元データに対応するため,階層型一般化加法モデル(GAM)を提案する。
曲線の適切な縮退と滑らか化関数線型空間と非線形空間の分離に対する平滑化ペナルティを考察する。
2つの決定論的アルゴリズム、EM-Coordinate Descent と EM-Iterative Weighted Least Squares は異なるユーティリティ向けに開発された。
論文 参考訳(メタデータ) (2021-10-27T14:11:13Z) - Hierarchical Gaussian Process Models for Regression Discontinuity/Kink
under Sharp and Fuzzy Designs [0.0]
回帰不連続/リンク(RD/RK)を用いた因果推論のための非パラメトリックベイズ推定器を提案する。
これらの推定器は、中間ベイズニューラルネットワーク層を持つ階層型GPモデルに拡張される。
モンテカルロシミュレーションにより、我々の推定器は、精度、カバレッジ、間隔長の点で競合する推定器よりもよく、しばしばよく機能することを示した。
論文 参考訳(メタデータ) (2021-10-03T04:23:56Z) - Scalable Spatiotemporally Varying Coefficient Modelling with Bayesian Kernelized Tensor Regression [17.158289775348063]
カーネル化されたテンソル回帰(BKTR)は、低ランクの時間構造を持つモデリングプロセスに対する新しいスケーラブルなアプローチと考えられる。
そこで本研究では,BKTRのモデル推定と推定において,BKTRの優れた性能と効率性を確認した。
論文 参考訳(メタデータ) (2021-08-31T19:22:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。