KeyKnowledgeRAG (K^2RAG): An Enhanced RAG method for improved LLM question-answering capabilities
- URL: http://arxiv.org/abs/2507.07695v2
- Date: Thu, 31 Jul 2025 08:57:40 GMT
- Title: KeyKnowledgeRAG (K^2RAG): An Enhanced RAG method for improved LLM question-answering capabilities
- Authors: Hruday Markondapatnaikuni, Basem Suleiman, Abdelkarim Erradi, Shijing Chen,
- Abstract summary: KeyKnowledgeRAG (K2RAG) is a novel framework designed to overcome limitations in RAG implementations.<n>It integrates dense and sparse vector search, knowledge graphs, and text summarization to improve retrieval quality and system efficiency.<n>K2RAG achieved the highest mean answer similarity score of 0.57, and reached the highest third quartile (Q3) similarity of 0.82, indicating better alignment with ground-truth answers.
- Score: 2.4874078867686085
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Fine-tuning is an immensely resource-intensive process when retraining Large Language Models (LLMs) to incorporate a larger body of knowledge. Although many fine-tuning techniques have been developed to reduce the time and computational cost involved, the challenge persists as LLMs continue to grow in size and complexity. To address this, a new approach to knowledge expansion in LLMs is needed. Retrieval-Augmented Generation (RAG) offers one such alternative by storing external knowledge in a database and retrieving relevant chunks to support question answering. However, naive implementations of RAG face significant limitations in scalability and answer accuracy. This paper introduces KeyKnowledgeRAG (K2RAG), a novel framework designed to overcome these limitations. Inspired by the divide-and-conquer paradigm, K2RAG integrates dense and sparse vector search, knowledge graphs, and text summarization to improve retrieval quality and system efficiency. The framework also includes a preprocessing step that summarizes the training data, significantly reducing the training time. K2RAG was evaluated using the MultiHopRAG dataset, where the proposed pipeline was trained on the document corpus and tested on a separate evaluation set. Results demonstrated notable improvements over common naive RAG implementations. K2RAG achieved the highest mean answer similarity score of 0.57, and reached the highest third quartile (Q3) similarity of 0.82, indicating better alignment with ground-truth answers. In addition to improved accuracy, the framework proved highly efficient. The summarization step reduced the average training time of individual components by 93%, and execution speed was up to 40% faster than traditional knowledge graph-based RAG systems. K2RAG also demonstrated superior scalability, requiring three times less VRAM than several naive RAG implementations tested in this study.
Related papers
- RAG in the Wild: On the (In)effectiveness of LLMs with Mixture-of-Knowledge Retrieval Augmentation [45.679455112940175]
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by integrating external knowledge retrieved at inference time.<n>We evaluated RAG systems using MassiveDS, a large-scale datastore with mixture of knowledge, and identified critical limitations.
arXiv Detail & Related papers (2025-07-26T20:57:24Z) - Clue-RAG: Towards Accurate and Cost-Efficient Graph-based RAG via Multi-Partite Graph and Query-Driven Iterative Retrieval [7.542076325904203]
Retrieval-Augmented Generation (RAG) addresses the limitation by incorporating external information, often from graph-structured data.<n>We propose Clue-RAG, a novel approach that introduces a multi-partite graph index and a query-driven iterative retrieval strategy.<n>Experiments on three QA benchmarks show that Clue-RAG significantly outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2025-07-11T09:36:45Z) - Learning Efficient and Generalizable Graph Retriever for Knowledge-Graph Question Answering [75.12322966980003]
Large Language Models (LLMs) have shown strong inductive reasoning ability across various domains.<n>Most existing RAG pipelines rely on unstructured text, limiting interpretability and structured reasoning.<n>Recent studies have explored integrating knowledge graphs with LLMs for knowledge graph question answering.<n>We propose RAPL, a novel framework for efficient and effective graph retrieval in KGQA.
arXiv Detail & Related papers (2025-06-11T12:03:52Z) - FB-RAG: Improving RAG with Forward and Backward Lookup [4.961899585180462]
Forward-Backward RAG (FB-RAG) is a new training-free framework based on a simple yet powerful forward-looking strategy.<n>FB-RAG consistently delivers strong results across 9 datasets.
arXiv Detail & Related papers (2025-05-22T18:31:52Z) - Accelerating Adaptive Retrieval Augmented Generation via Instruction-Driven Representation Reduction of Retrieval Overlaps [16.84310001807895]
This paper introduces a model-agnostic approach that can be applied to A-RAG methods.<n>Specifically, we use cache access and parallel generation to speed up the prefilling and decoding stages respectively.
arXiv Detail & Related papers (2025-05-19T05:39:38Z) - Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [97.72503890388866]
We propose Self-Routing RAG (SR-RAG), a novel framework that binds selective retrieval with knowledge verbalization.<n>SR-RAG enables an LLM to dynamically decide between external retrieval and verbalizing its own parametric knowledge.<n>We introduce dynamic knowledge source inference via nearest neighbor search to improve the accuracy of knowledge source decision.
arXiv Detail & Related papers (2025-04-01T17:59:30Z) - RAGO: Systematic Performance Optimization for Retrieval-Augmented Generation Serving [9.962031642362813]
Retrieval-augmented generation (RAG) is emerging as a popular approach for reliable LLM serving.<n>RAG is a structured abstraction that captures the wide range of RAG algorithms.<n> RAGO is a system optimization framework for efficient RAG serving.
arXiv Detail & Related papers (2025-03-18T18:58:13Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.<n>Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - MemoRAG: Boosting Long Context Processing with Global Memory-Enhanced Retrieval Augmentation [60.04380907045708]
Retrieval-Augmented Generation (RAG) is considered a promising strategy to address this problem.<n>We propose MemoRAG, a novel RAG framework empowered by global memory-augmented retrieval.<n>MemoRAG achieves superior performances across a variety of long-context evaluation tasks.
arXiv Detail & Related papers (2024-09-09T13:20:31Z) - RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation [54.707460684650584]
Large Language Models (LLMs) demonstrate human-level capabilities in dialogue, reasoning, and knowledge retention.
Current research addresses this bottleneck by equipping LLMs with external knowledge, a technique known as Retrieval Augmented Generation (RAG)
RAGLAB is a modular and research-oriented open-source library that reproduces 6 existing algorithms and provides a comprehensive ecosystem for investigating RAG algorithms.
arXiv Detail & Related papers (2024-08-21T07:20:48Z) - Speculative RAG: Enhancing Retrieval Augmented Generation through Drafting [68.90949377014742]
Speculative RAG is a framework that leverages a larger generalist LM to efficiently verify multiple RAG drafts produced in parallel by a smaller, distilled specialist LM.<n>Our method accelerates RAG by delegating drafting to the smaller specialist LM, with the larger generalist LM performing a single verification pass over the drafts.<n>It notably enhances accuracy by up to 12.97% while reducing latency by 50.83% compared to conventional RAG systems on PubHealth.
arXiv Detail & Related papers (2024-07-11T06:50:19Z) - Retrieval-Augmented Generation for Large Language Models: A Survey [17.82361213043507]
Large Language Models (LLMs) showcase impressive capabilities but encounter challenges like hallucination.
Retrieval-Augmented Generation (RAG) has emerged as a promising solution by incorporating knowledge from external databases.
arXiv Detail & Related papers (2023-12-18T07:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.