論文の概要: SurfDist: Interpretable Three-Dimensional Instance Segmentation Using Curved Surface Patches
- arxiv url: http://arxiv.org/abs/2507.08223v1
- Date: Fri, 11 Jul 2025 00:03:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-14 18:03:54.205848
- Title: SurfDist: Interpretable Three-Dimensional Instance Segmentation Using Curved Surface Patches
- Title(参考訳): SurfDist:曲面パッチを用いた解釈可能な3次元インスタンスセグメンテーション
- Authors: Jackson Borchardt, Saul Kato,
- Abstract要約: 本稿では,3次元ボリュームインスタンスセグメンテーションのための畳み込みニューラルネットワークアーキテクチャであるSurfDistを提案する。
SurfDistは一般的なモデルアーキテクチャであるStarDist-3Dを改良したもので、StarDist-3Dのインスタンスパラメータ化次元とインスタンスのボクセル分解能の結合を断ち切る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present SurfDist, a convolutional neural network architecture for three-dimensional volumetric instance segmentation. SurfDist enables prediction of instances represented as closed surfaces composed of smooth parametric surface patches, specifically bicubic B\'ezier triangles. SurfDist is a modification of the popular model architecture StarDist-3D which breaks StarDist-3D's coupling of instance parameterization dimension and instance voxel resolution, and it produces predictions which may be upsampled to arbitrarily high resolutions without introduction of voxelization artifacts. For datasets with blob-shaped instances, common in biomedical imaging, SurfDist can outperform StarDist-3D with more compact instance parameterizations. We detail SurfDist's technical implementation and show one synthetic and one real-world dataset for which it outperforms StarDist-3D. These results demonstrate that interpretable instance surface models can be learned effectively alongside instance membership.
- Abstract(参考訳): 本稿では,3次元ボリュームインスタンスセグメンテーションのための畳み込みニューラルネットワークアーキテクチャであるSurfDistを提案する。
SurfDistは、滑らかなパラメトリック表面パッチ、特にバイコビックなB'ezier三角形からなる閉曲面として表されるインスタンスの予測を可能にする。
SurfDistは、スターディスト3Dのインスタンスパラメータ化次元とインスタンスのボクセル解像度の結合を破り、ボクセル化アーティファクトを導入することなく任意の高解像度にアップサンプリングできる予測を生成する、人気のモデルアーキテクチャであるスターディスト3Dの修正である。
バイオメディカルイメージングで一般的なブロブ型のインスタンスを持つデータセットの場合、SurfDistはよりコンパクトなインスタンスパラメータ化でStarDist-3Dより優れている。
本稿では、SurfDistの技術的実装を詳述し、StarDist-3Dより優れた合成と実世界のデータセットを1つ紹介する。
これらの結果は、解釈可能なインスタンス表面モデルが、インスタンスメンバーシップとともに効果的に学習できることを証明している。
関連論文リスト
- OV-MAP : Open-Vocabulary Zero-Shot 3D Instance Segmentation Map for Robots [18.200635521222267]
OV-MAPは、オブジェクト認識機能を高めるために、オープンな特徴を3Dマップに統合することで、移動ロボットのためのオープンワールド3Dマッピングの新しいアプローチである。
我々は2次元マスクを3次元空間に投影するクラス非依存セグメンテーションモデルと、点雲から生の深度と合成の深度をマージして作成した補足深度画像を組み合わせた。
このアプローチは、3Dマスク投票機構とともに、3D教師付きセグメンテーションモデルに頼ることなく、正確なゼロショット3Dインスタンスセグメンテーションを可能にする。
論文 参考訳(メタデータ) (2025-06-13T08:49:23Z) - Object Modeling from Underwater Forward-Scan Sonar Imagery with Sea-Surface Multipath [16.057203527513632]
海面近傍で撮影された物体に対する重要な貢献は、気-水界面によるマルチパスアーチファクトの解決である。
ここでは、直接目標後方散乱によって形成された物体像は、ほとんど常にゴーストや鏡部品によって破壊される。
各ビュー内の劣化したオブジェクト領域をモデル化し,ローカライズし,破棄することにより,復元された3次元形状の歪みを回避する。
論文 参考訳(メタデータ) (2024-09-10T18:46:25Z) - Surf-D: Generating High-Quality Surfaces of Arbitrary Topologies Using Diffusion Models [83.35835521670955]
Surf-Dは任意の位相を持つ表面として高品質な3次元形状を生成する新しい方法である。
非符号距離場(UDF)を曲面表現として用いて任意の位相を許容する。
また、ポイントベースのAutoEncoderを用いて、UDFを正確に符号化するためのコンパクトで連続的な潜在空間を学習する新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2023-11-28T18:56:01Z) - Pyramid Diffusion for Fine 3D Large Scene Generation [56.00726092690535]
拡散モデルは2次元画像と小型3次元オブジェクトの生成において顕著な結果を示した。
大規模な3Dシーンの合成への応用はめったに研究されていない。
本稿では,大規模拡散モデルを用いて,高品質な屋外シーンを段階的に生成するフレームワークであるPraamid Discrete Diffusion Model (PDD)を紹介する。
論文 参考訳(メタデータ) (2023-11-20T11:24:21Z) - 3D Adversarial Augmentations for Robust Out-of-Domain Predictions [115.74319739738571]
ドメイン外データへの一般化の改善に注力する。
対象を逆向きに変形させるベクトルの集合を学習する。
本研究では,学習したサンプル非依存ベクトルをモデルトレーニング時に利用可能なオブジェクトに適用することにより,対数拡大を行う。
論文 参考訳(メタデータ) (2023-08-29T17:58:55Z) - SurfGen: Adversarial 3D Shape Synthesis with Explicit Surface
Discriminators [5.575197901329888]
本研究では,物体表面に直接対向学習を行う3次元形状合成フレームワーク(SurfGen)を提案する。
提案手法では, 球面上に定義された関数として, 暗黙的な3次元ジェネレータの自明な零等方面を捕捉し, 表現するために, 微分可能な球面射影層を用いる。
大規模形状データセットを用いて本モデルの評価を行い,多種多様なトポロジを持つ高忠実度3次元形状を創出できることを実証した。
論文 参考訳(メタデータ) (2022-01-01T04:44:42Z) - Deep Marching Tetrahedra: a Hybrid Representation for High-Resolution 3D
Shape Synthesis [90.26556260531707]
DMTetは粗いボクセルのような単純なユーザーガイドを用いて高解像度の3次元形状を合成できる条件付き生成モデルである。
メッシュなどの明示的な表現を直接生成する深部3次元生成モデルとは異なり、我々のモデルは任意の位相で形状を合成することができる。
論文 参考訳(メタデータ) (2021-11-08T05:29:35Z) - Deep Implicit Surface Point Prediction Networks [49.286550880464866]
暗黙の関数としての3次元形状の深い神経表現は、高忠実度モデルを生成することが示されている。
本稿では,CSP(Nest Surface-point)表現と呼ばれる新しい種類の暗黙の表現を用いて,そのような曲面をモデル化する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-10T14:31:54Z) - Combining Implicit Function Learning and Parametric Models for 3D Human
Reconstruction [123.62341095156611]
深層学習近似として表される暗黙の関数は、3次元曲面の再構成に強力である。
このような機能は、コンピュータグラフィックスとコンピュータビジョンの両方に柔軟なモデルを構築するのに不可欠である。
詳細に富んだ暗黙関数とパラメトリック表現を組み合わせた方法論を提案する。
論文 参考訳(メタデータ) (2020-07-22T13:46:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。