Angular momentum dynamics of vortex particles in accelerators
- URL: http://arxiv.org/abs/2507.08763v1
- Date: Fri, 11 Jul 2025 17:20:08 GMT
- Title: Angular momentum dynamics of vortex particles in accelerators
- Authors: D. Karlovets, D. Grosman, I. Pavlov,
- Abstract summary: vortex particles could complement - or even replace - spin-polarized beams in high-energy collisions.<n> vortex particle acceleration can be more feasible in linacs, while Siberian snakes could serve as a tool for angular momentum manipulations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Experiments with spin-polarized beams of leptons and hadrons typically employ plane-wave states with definite momenta and energies. In contrast, vortex states represent cylindrical waves carrying a well-defined orbital angular momentum projection along the propagation direction. This projection can be arbitrarily large, endowing such particles with magnetic moments orders of magnitude greater than those of plane-wave states. Consequently, vortex particles could complement - or even replace - spin-polarized beams in high-energy collisions, enabling access to observables beyond the reach of the conventional states. Although relativistic vortex beams have yet to be realized, we investigate the radiative and non-radiative dynamics of angular momentum for vortex particles in accelerators. We compute the timescale for angular momentum loss via photon emission, finding it significantly longer than typical acceleration times. The non-radiative dynamics is governed by precession, with the orbital angular momentum precessing at a frequency markedly different from that of spin. Similar to spin tunes in circular accelerators, this can induce resonances that disrupt the beam's orbital momentum - occurring far more frequently for vortex beams than for spin-polarized ones. Thus, vortex particle acceleration can be more feasible in linacs, while Siberian snakes could serve as a tool for angular momentum manipulations.
Related papers
- Generalized Gouy Rotation of Electron Vortex beams in uniform magnetic fields [54.010858975226945]
The intrinsic rotation of electron vortex beams has been experimentally observed in magnetic fields by breaking the beam's cylindrical symmetry.<n>We introduce and derive the generalized Gouy rotation angle, which links the Gouy phase of an extended Landau state to the experimentally observed angular variation.<n>Our results are, in principle, applicable to any system involving electron vortex beams in uniform magnetic fields.
arXiv Detail & Related papers (2024-07-03T03:29:56Z) - Angular Bloch Oscillations and their applications [0.0]
We investigate the dynamics of ultra-cold atoms confined in a toroidal trap with a ring-lattice along the azimuth angle.
In the presence of external rotation of small angular acceleration, or prescribed linear chirp between the two beams, the measured angular momentum of trapped atoms displays a specific periodic behaviour in time.
arXiv Detail & Related papers (2024-02-20T08:50:07Z) - Vortex Structures and Momentum Sharing in Dynamic Sauter-Schwinger
Process [0.0]
Vortex pattern formation in electron-positron pair creation from vacuum by a time-dependent electric field of linear polarization is analyzed.
Their sensitivity to the laser field parameters such as the field frequency and intensity is also studied.
arXiv Detail & Related papers (2023-06-13T10:23:17Z) - Vortex spin in a superfluid [0.0]
General relativity predicts that curvature of spacetime induces spin rotations on a parallel transported particle.
We consider a quantised vortex embedded in a two-dimensional superfluid Bose--Einstein condensate.
We show that such a vortex behaves dynamically like a charged particle with a spin in a gravitational field.
arXiv Detail & Related papers (2023-05-25T12:56:13Z) - Spin and Orbital Angular Momentum of Coherent Photons in a Waveguide [0.0]
We show that spin and orbital angular momentum of a photon cannot be split from the total orbital angular momentum in a gauge-invariant way.
By applying a standard quantum field theory using a coherent state, we obtained the gauge-independent expressions of spin and orbital angular momentum operators.
arXiv Detail & Related papers (2023-03-30T03:24:18Z) - Bohm - de Broglie Cycles [0.05076419064097732]
In the de Broglie-Bohm quantum theory, particles describe trajectories determined by the flux associated with their wave function.
These trajectories are studied here for relativistic spin-one-half particles.
The chosen energy and momentum parameters are of the orders of magnitude met in graphene's physics.
arXiv Detail & Related papers (2023-01-30T19:38:04Z) - Shifting physics of vortex particles to higher energies via quantum
entanglement [0.0]
vortex particles with an orbital angular momentum would come in handy for a number of experiments in atomic physics, nuclear, hadronic, and accelerator physics.
We show that the vortex states of in principle arbitrary particles can be generated during photon emission in helical undulators, via Cherenkov radiation, in collisions of charged particles with intense laser beams.
arXiv Detail & Related papers (2022-03-22T19:37:13Z) - Production of twisted particles in heavy-ion collisions [68.8204255655161]
A prevalence of production of twisted (vortex) particles in noncentral heavy-ion collisions is shown.
Charged particles are produced in nonspreading multiwave states and have significant orbital angular momenta.
arXiv Detail & Related papers (2021-12-23T07:54:33Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Motion-induced radiation due to an atom in the presence of a graphene
plane [62.997667081978825]
We study the motion-induced radiation due to the non-relativistic motion of an atom in the presence of a static graphene plate.
We show that the effect of the plate is to increase the probability of emission when the atom is near the plate and oscillates along a direction perpendicular to it.
arXiv Detail & Related papers (2021-04-15T14:15:23Z) - Gravity Probe Spin: Prospects for measuring general-relativistic
precession of intrinsic spin using a ferromagnetic gyroscope [51.51258642763384]
An experimental test at the intersection of quantum physics and general relativity is proposed.
The behavior of intrinsic spin in spacetime is an experimentally open question.
A measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth.
arXiv Detail & Related papers (2020-06-16T17:18:44Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.