AdjointNet: Constraining machine learning models with physics-based
codes
- URL: http://arxiv.org/abs/2109.03956v1
- Date: Wed, 8 Sep 2021 22:43:44 GMT
- Title: AdjointNet: Constraining machine learning models with physics-based
codes
- Authors: Satish Karra, Bulbul Ahmmed, and Maruti K. Mudunuru
- Abstract summary: This paper proposes a physics constrained machine learning framework, AdjointNet, allowing domain scientists to embed their physics code in neural network training.
We show that the proposed AdjointNet framework can be used for parameter estimation (and uncertainty quantification by extension) and experimental design using active learning.
- Score: 0.17205106391379021
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed Machine Learning has recently become attractive for learning
physical parameters and features from simulation and observation data. However,
most existing methods do not ensure that the physics, such as balance laws
(e.g., mass, momentum, energy conservation), are constrained. Some recent works
(e.g., physics-informed neural networks) softly enforce physics constraints by
including partial differential equation (PDE)-based loss functions but need
re-discretization of the PDEs using auto-differentiation. Training these neural
nets on observational data showed that one could solve forward and inverse
problems in one shot. They evaluate the state variables and the parameters in a
PDE. This re-discretization of PDEs is not necessarily an attractive option for
domain scientists that work with physics-based codes that have been developed
for decades with sophisticated discretization techniques to solve complex
process models and advanced equations of state. This paper proposes a physics
constrained machine learning framework, AdjointNet, allowing domain scientists
to embed their physics code in neural network training workflows. This
embedding ensures that physics is constrained everywhere in the domain.
Additionally, the mathematical properties such as consistency, stability, and
convergence vital to the numerical solution of a PDE are still satisfied. We
show that the proposed AdjointNet framework can be used for parameter
estimation (and uncertainty quantification by extension) and experimental
design using active learning. The applicability of our framework is
demonstrated for four flow cases. Results show that AdjointNet-based inversion
can estimate process model parameters with reasonable accuracy. These examples
demonstrate the applicability of using existing software with no changes in
source code to perform accurate and reliable inversion of model parameters.
Related papers
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.
To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.
Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Text2PDE: Latent Diffusion Models for Accessible Physics Simulation [7.16525545814044]
We introduce several methods to apply latent diffusion models to physics simulation.
We show that the proposed approach is competitive with current neural PDE solvers in both accuracy and efficiency.
By introducing a scalable, accurate, and usable physics simulator, we hope to bring neural PDE solvers closer to practical use.
arXiv Detail & Related papers (2024-10-02T01:09:47Z) - A Physics-driven GraphSAGE Method for Physical Process Simulations
Described by Partial Differential Equations [2.1217718037013635]
A physics-driven GraphSAGE approach is presented to solve problems governed by irregular PDEs.
A distance-related edge feature and a feature mapping strategy are devised to help training and convergence.
The robust PDE surrogate model for heat conduction problems parameterized by the Gaussian singularity random field source is successfully established.
arXiv Detail & Related papers (2024-03-13T14:25:15Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and material models.
We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned.
We introduce a new framework termed "Neural Constitutive Laws" (NCLaw) which utilizes a network architecture that strictly guarantees standard priors.
arXiv Detail & Related papers (2023-04-27T17:42:24Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Deep Physics Corrector: A physics enhanced deep learning architecture
for solving stochastic differential equations [0.0]
We propose a novel gray-box modeling algorithm for physical systems governed by differential equations (SDE)
The proposed approach, referred to as the Deep Physics Corrector (DPC), blends approximate physics represented in terms of SDE with deep neural network (DNN)
We illustrate the performance of the proposed DPC on four benchmark examples from the literature.
arXiv Detail & Related papers (2022-09-20T14:30:07Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Encoding physics to learn reaction-diffusion processes [18.187800601192787]
We show how a deep learning framework that encodes given physics structure can be applied to a variety of problems regarding the PDE system regimes.
The resultant learning paradigm that encodes physics shows high accuracy, robustness, interpretability and generalizability demonstrated via extensive numerical experiments.
arXiv Detail & Related papers (2021-06-09T03:02:20Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Physics Informed Deep Learning for Transport in Porous Media. Buckley
Leverett Problem [0.0]
We present a new hybrid physics-based machine-learning approach to reservoir modeling.
The methodology relies on a series of deep adversarial neural network architecture with physics-based regularization.
The proposed methodology is a simple and elegant way to instill physical knowledge to machine-learning algorithms.
arXiv Detail & Related papers (2020-01-15T08:20:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.