Robust Chiral Edge Dynamics of a Kitaev Honeycomb on a Trapped Ion Processor
- URL: http://arxiv.org/abs/2507.08939v1
- Date: Fri, 11 Jul 2025 18:01:05 GMT
- Title: Robust Chiral Edge Dynamics of a Kitaev Honeycomb on a Trapped Ion Processor
- Authors: Ammar Ali, Joe Gibbs, Keerthi Kumaran, Varadharajan Muruganandam, Bo Xiao, Paul Kairys, Gábor Halász, Arnab Banerjee, Phillip C. Lotshaw,
- Abstract summary: We report quantum simulations of a 22-site Kitaev honeycomb lattice on a trapped-ion quantum processor.<n>We observe chiral edge dynamics consistent with a nonzero Chern number.<n>Our work demonstrates a viable route for probing dynamical signatures of topological order in quantum spin liquids.
- Score: 1.8128207476952005
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Kitaev's honeycomb model is a paradigmatic exactly solvable system hosting a quantum spin liquid with non-Abelian anyons and topologically protected edge modes, offering a platform for fault-tolerant quantum computation. However, real candidate Kitaev materials invariably include complex secondary interactions that obscure the realization of spin-liquid behavior and demand novel quantum computational approaches for efficient simulation. Here we report quantum simulations of a 22-site Kitaev honeycomb lattice on a trapped-ion quantum processor, without and with non-integrable Heisenberg interactions that are present in real materials. We develop efficient quantum circuits for ground-state preparation, then apply controlled perturbations and measure time-dependent spin correlations along the system's edge. In the non-Abelian phase, we observe chiral edge dynamics consistent with a nonzero Chern number -- a hallmark of topological order -- which vanishes upon transition to the Abelian toric code phase. Extending to the non-integrable Kitaev-Heisenberg model, we find that weak Heisenberg interactions preserve chiral edge dynamics, while stronger couplings suppress them, signaling the breakdown of topological protection. Our work demonstrates a viable route for probing dynamical signatures of topological order in quantum spin liquids using programmable quantum hardware, opening new pathways for quantum simulation of strongly correlated materials.
Related papers
- Harnessing Chiral Spin States in Molecular Nanomagnets for Quantum Technologies [44.1973928137492]
We show that chiral qubits naturally suppress always-on interactions that can not be switched off in weakly coupled qubits.<n>Our findings establish spin chirality engineering as a promising strategy for mitigating always-on interaction in entangling two chiral qubits in molecular quantum technologies.
arXiv Detail & Related papers (2025-01-21T08:23:12Z) - Quantum ergodicity and scrambling in quantum annealers [0.0]
We show that the unitary evolution operator describing the complete dynamics of quantum annealers is typically highly quantum chaotic.
We observe that the Heisenberg dynamics of a quantum annealer leads to extensive operator spreading, a hallmark of quantum information scrambling.
arXiv Detail & Related papers (2024-11-19T16:34:35Z) - Entanglement with neutral atoms in the simulation of nonequilibrium dynamics of one-dimensional spin models [0.0]
We study the generation and role of entanglement in the dynamics of spin-1/2 models.
We introduce the neutral atom Molmer-Sorensen gate, involving rapid adiabatic Rydberg dressing interleaved in a spin-echo sequence.
In quantum simulation, we consider critical behavior in quench dynamics of transverse field Ising models.
arXiv Detail & Related papers (2024-06-07T23:29:16Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Non-Abelian Floquet Spin Liquids in a Digital Rydberg Simulator [0.0]
We introduce and analyze a new approach to simulating topological matter based on periodic driving.
We show that this approach, including the toolbox for preparation, control, and readout of topological states, can be efficiently implemented in state-of-the-art experimental platforms.
arXiv Detail & Related papers (2022-10-31T18:00:01Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Realizing a dynamical topological phase in a trapped-ion quantum
simulator [0.0]
Nascent platforms for programmable quantum simulation offer unprecedented access to new regimes of far-from-equilibrium quantum many-body dynamics.
We show how to create, protect, and manipulate quantum entanglement that self-correct against large classes of errors.
Our work paves the way for implementation of more complex dynamical topological orders that would enable error-resilient techniques to manipulate quantum information.
arXiv Detail & Related papers (2021-07-20T18:00:00Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Quantum simulation of antiferromagnetic Heisenberg chain with
gate-defined quantum dots [0.0]
Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model.
We show the quantum simulation of magnetism in the Mott-insulator regime with a linear quantum-dot array.
arXiv Detail & Related papers (2021-03-15T09:45:02Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.