Accelerating Drug Discovery Through Agentic AI: A Multi-Agent Approach to Laboratory Automation in the DMTA Cycle
- URL: http://arxiv.org/abs/2507.09023v1
- Date: Fri, 11 Jul 2025 21:13:13 GMT
- Title: Accelerating Drug Discovery Through Agentic AI: A Multi-Agent Approach to Laboratory Automation in the DMTA Cycle
- Authors: Yao Fehlis, Charles Crain, Aidan Jensen, Michael Watson, James Juhasz, Paul Mandel, Betty Liu, Shawn Mahon, Daren Wilson, Nick Lynch-Jonely, Ben Leedom, David Fuller,
- Abstract summary: This paper introduces a novel AI framework, Tippy, that transforms laboratory automation through specialized AI agents.<n>Our multi-agent system employs five specialized agents - Supervisor, Molecule, Lab, Analysis, and Report, with Safety Guardrail oversight.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The pharmaceutical industry faces unprecedented challenges in drug discovery, with traditional approaches struggling to meet modern therapeutic development demands. This paper introduces a novel AI framework, Tippy, that transforms laboratory automation through specialized AI agents operating within the Design-Make-Test-Analyze (DMTA) cycle. Our multi-agent system employs five specialized agents - Supervisor, Molecule, Lab, Analysis, and Report, with Safety Guardrail oversight - each designed to excel in specific phases of the drug discovery pipeline. Tippy represents the first production-ready implementation of specialized AI agents for automating the DMTA cycle, providing a concrete example of how AI can transform laboratory workflows. By leveraging autonomous AI agents that reason, plan, and collaborate, we demonstrate how Tippy accelerates DMTA cycles while maintaining scientific rigor essential for pharmaceutical research. The system shows significant improvements in workflow efficiency, decision-making speed, and cross-disciplinary coordination, offering a new paradigm for AI-assisted drug discovery.
Related papers
- Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) agents are designed to tackle complex, multi-turn informational research tasks.<n>In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute DR agents.
arXiv Detail & Related papers (2025-06-22T16:52:48Z) - DrugPilot: LLM-based Parameterized Reasoning Agent for Drug Discovery [54.79763887844838]
Large language models (LLMs) integrated with autonomous agents hold significant potential for advancing scientific discovery through automated reasoning and task execution.<n>We introduce DrugPilot, a LLM-based agent system with a parameterized reasoning architecture designed for end-to-end scientific in drug discovery.<n>DrugPilot significantly outperforms state-of-the-art agents such as ReAct and LoT, achieving task completion rates of 98.0%, 93.5%, and 64.0% for simple, multi-tool, and multi-turn scenarios, respectively.
arXiv Detail & Related papers (2025-05-20T05:18:15Z) - Accelerating drug discovery with Artificial: a whole-lab orchestration and scheduling system for self-driving labs [0.0]
Self-driving labs are transforming drug discovery by enabling automated, AI-guided experimentation.<n>But they face challenges in orchestrating complex, integrating diverse instruments and AI models, and managing data efficiently.<n>Artificial addresses these issues with a comprehensive orchestration and scheduling system.<n>It unifies lab operations, automates, and integrates AI-driven decision-making.
arXiv Detail & Related papers (2025-04-01T17:22:50Z) - PharmAgents: Building a Virtual Pharma with Large Language Model Agents [19.589707628042422]
We introduce PharmAgents, a virtual pharmaceutical ecosystem driven by multi-agent collaboration.<n>The system integrates explainable, LLM-driven agents equipped with specialized machine learning models and computational tools.<n>It identifies potential therapeutic targets, discovers promising lead compounds, enhances binding affinity and key molecular properties, and performs in silico analyses of toxicity and synthetic feasibility.
arXiv Detail & Related papers (2025-03-28T06:02:53Z) - Autonomous Microscopy Experiments through Large Language Model Agents [4.241267255764773]
Large language models (LLMs) are revolutionizing self driving laboratories (SDLs) for materials research.<n>We introduce Artificially Intelligent Lab Assistant (AILA), a framework automating atomic force microscopy through LLM driven agents.<n>We find that state of the art models struggle with basic tasks and coordination scenarios.
arXiv Detail & Related papers (2024-12-18T09:35:28Z) - Agents for self-driving laboratories applied to quantum computing [2.840384720502993]
This paper introduces the k-agents framework, designed to support experimentalists in organizing laboratory knowledge and automating experiments with agents.<n>Our framework employs large language model-based agents to encapsulate laboratory knowledge including available laboratory operations and methods for analyzing experiment results.<n>To automate experiments, we introduce execution agents that break multi-step experimental procedures into agent-based state machines, interact with other agents to execute each step and analyze the experiment results.
arXiv Detail & Related papers (2024-12-10T23:30:44Z) - DrugAgent: Automating AI-aided Drug Discovery Programming through LLM Multi-Agent Collaboration [24.65716292347949]
DrugAgent is a multi-agent framework that automates machine learning (ML) programming for drug discovery tasks.<n>Our results show that DrugAgent consistently outperforms leading baselines.
arXiv Detail & Related papers (2024-11-24T03:06:59Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgent is a generic method to automatically extend specialized agents to multi-agent systems.<n>We show that EvoAgent can significantly enhance the task-solving capability of LLM-based agents.
arXiv Detail & Related papers (2024-06-20T11:49:23Z) - CRISPR-GPT: An LLM Agent for Automated Design of Gene-Editing Experiments [51.41735920759667]
Large Language Models (LLMs) have shown promise in various tasks, but they often lack specific knowledge and struggle to accurately solve biological design problems.
In this work, we introduce CRISPR-GPT, an LLM agent augmented with domain knowledge and external tools to automate and enhance the design process of CRISPR-based gene-editing experiments.
arXiv Detail & Related papers (2024-04-27T22:59:17Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [55.30328162764292]
Chemist-X is a comprehensive AI agent that automates the reaction condition optimization (RCO) task in chemical synthesis.<n>The agent uses retrieval-augmented generation (RAG) technology and AI-controlled wet-lab experiment executions.<n>Results of our automatic wet-lab experiments, achieved by fully LLM-supervised end-to-end operation with no human in the lope, prove Chemist-X's ability in self-driving laboratories.
arXiv Detail & Related papers (2023-11-16T01:21:33Z) - ProAgent: From Robotic Process Automation to Agentic Process Automation [87.0555252338361]
Large Language Models (LLMs) have emerged human-like intelligence.
This paper introduces Agentic Process Automation (APA), a groundbreaking automation paradigm using LLM-based agents for advanced automation.
We then instantiate ProAgent, an agent designed to craft from human instructions and make intricate decisions by coordinating specialized agents.
arXiv Detail & Related papers (2023-11-02T14:32:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.