DrugAgent: Automating AI-aided Drug Discovery Programming through LLM Multi-Agent Collaboration
- URL: http://arxiv.org/abs/2411.15692v2
- Date: Wed, 05 Mar 2025 10:54:30 GMT
- Title: DrugAgent: Automating AI-aided Drug Discovery Programming through LLM Multi-Agent Collaboration
- Authors: Sizhe Liu, Yizhou Lu, Siyu Chen, Xiyang Hu, Jieyu Zhao, Yingzhou Lu, Yue Zhao,
- Abstract summary: DrugAgent is a multi-agent framework that automates machine learning (ML) programming for drug discovery tasks.<n>Our results show that DrugAgent consistently outperforms leading baselines.
- Score: 24.65716292347949
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent progress in Large Language Models (LLMs) has drawn attention to their potential for accelerating drug discovery. However, a central problem remains: translating theoretical ideas into robust implementations in the highly specialized context of pharmaceutical research. This limitation prevents practitioners from making full use of the latest AI developments in drug discovery. To address this challenge, we introduce DrugAgent, a multi-agent framework that automates machine learning (ML) programming for drug discovery tasks. DrugAgent employs an LLM Planner that formulates high-level ideas and an LLM Instructor that identifies and integrates domain knowledge when implementing those ideas. We present case studies on three representative drug discovery tasks. Our results show that DrugAgent consistently outperforms leading baselines, including a relative improvement of 4.92% in ROC-AUC compared to ReAct for drug-target interaction (DTI). DrugAgent is publicly available at https://anonymous.4open.science/r/drugagent-5C42/.
Related papers
- PharmAgents: Building a Virtual Pharma with Large Language Model Agents [19.589707628042422]
We introduce PharmAgents, a virtual pharmaceutical ecosystem driven by multi-agent collaboration.
The system integrates explainable, LLM-driven agents equipped with specialized machine learning models and computational tools.
It identifies potential therapeutic targets, discovers promising lead compounds, enhances binding affinity and key molecular properties, and performs in silico analyses of toxicity and synthetic feasibility.
arXiv Detail & Related papers (2025-03-28T06:02:53Z) - LIDDIA: Language-based Intelligent Drug Discovery Agent [0.5325390073522079]
LIDDiA is an autonomous agent capable of intelligently navigating the drug discovery process in silico.
It can generate molecules meeting key pharmaceutical criteria on over 70% of 30 clinically relevant targets.
It can identify promising novel drug candidates on EGFR, a critical target for cancers.
arXiv Detail & Related papers (2025-02-19T18:56:12Z) - Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance [95.03771007780976]
We tackle the challenge of developing proactive agents capable of anticipating and initiating tasks without explicit human instructions.
First, we collect real-world human activities to generate proactive task predictions.
These predictions are labeled by human annotators as either accepted or rejected.
The labeled data is used to train a reward model that simulates human judgment.
arXiv Detail & Related papers (2024-10-16T08:24:09Z) - Y-Mol: A Multiscale Biomedical Knowledge-Guided Large Language Model for Drug Development [24.5979645373074]
Y-Mol is a knowledge-guided LLM designed to accomplish tasks across lead compound discovery, pre-clinic, and clinic prediction.
It learns from a corpus of publications, knowledge graphs, and expert-designed synthetic data.
Y-Mol significantly outperforms general-purpose LLMs in discovering lead compounds, predicting molecular properties, and identifying drug interaction events.
arXiv Detail & Related papers (2024-10-15T12:39:20Z) - Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
The integration of Large Language Models (LLMs) into the drug discovery and development field marks a significant paradigm shift.
We investigate how these advanced computational models can uncover target-disease linkage, interpret complex biomedical data, enhance drug molecule design, predict drug efficacy and safety profiles, and facilitate clinical trial processes.
arXiv Detail & Related papers (2024-09-06T02:03:38Z) - DrugAgent: Explainable Drug Repurposing Agent with Large Language Model-based Reasoning [10.528489471229946]
We propose a multi-agent framework to enhance the drug repurposing process using state-of-the-art machine learning techniques and knowledge integration.
Our framework comprises several specialized agents: an AI Agent trains robust drug-target interaction (DTI) models; a Knowledge Graph Agent utilizes the drug-gene interaction database (DGIdb) to systematically extract DTIs.
By integrating outputs from these agents, our system effectively harnesses diverse data sources, including external databases, to propose viable repurposing candidates.
arXiv Detail & Related papers (2024-08-23T21:24:59Z) - Towards Evolutionary-based Automated Machine Learning for Small Molecule Pharmacokinetic Prediction [0.0]
Small molecule properties are crucial in the early stages of drug development.
Existing methods lack personalisation and rely on manually crafted ML algorithms or pipelines.
We propose a novel evolutionary-based automated ML method (AutoML) specifically designed for predicting small molecule properties.
arXiv Detail & Related papers (2024-08-01T09:46:06Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
Large language models (LLMs) are considered a promising foundation to build such agents.
We take the first step towards building generally-capable LLM-based agents with self-evolution ability.
We propose AgentGym, a new framework featuring a variety of environments and tasks for broad, real-time, uni-format, and concurrent agent exploration.
arXiv Detail & Related papers (2024-06-06T15:15:41Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
A major challenge for AI-driven drug discovery is the scarcity of high-quality data.
We develop a formula enhanced mul-ti-task learning (PEMAL) method that predicts four key parameters of pharmacokinetics simultaneously.
Our experiments reveal that PEMAL significantly lowers the data demand, compared to typical Graph Neural Networks.
arXiv Detail & Related papers (2024-04-16T07:42:55Z) - Emerging Opportunities of Using Large Language Models for Translation
Between Drug Molecules and Indications [6.832024637226738]
We propose a new task, which is the translation between drug molecules and corresponding indications.
The creation of molecules from indications, or vice versa, will allow for more efficient targeting of diseases.
arXiv Detail & Related papers (2024-02-14T21:33:13Z) - DrugAssist: A Large Language Model for Molecule Optimization [29.95488215594247]
DrugAssist is an interactive molecule optimization model that performs optimization through human-machine dialogue.
DrugAssist has achieved leading results in both single and multiple property optimization.
We publicly release a large instruction-based dataset called MolOpt-Instructions for fine-tuning language models on molecule optimization tasks.
arXiv Detail & Related papers (2023-12-28T10:46:56Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [55.30328162764292]
Chemist-X is a comprehensive AI agent that automates the reaction condition optimization (RCO) task in chemical synthesis.
The agent uses retrieval-augmented generation (RAG) technology and AI-controlled wet-lab experiment executions.
Results of our automatic wet-lab experiments, achieved by fully LLM-supervised end-to-end operation with no human in the lope, prove Chemist-X's ability in self-driving laboratories.
arXiv Detail & Related papers (2023-11-16T01:21:33Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z) - ImDrug: A Benchmark for Deep Imbalanced Learning in AI-aided Drug
Discovery [79.08833067391093]
Real-world pharmaceutical datasets often exhibit highly imbalanced distribution.
We introduce ImDrug, a benchmark with an open-source Python library which consists of 4 imbalance settings, 11 AI-ready datasets, 54 learning tasks and 16 baseline algorithms tailored for imbalanced learning.
It provides an accessible and customizable testbed for problems and solutions spanning a broad spectrum of the drug discovery pipeline.
arXiv Detail & Related papers (2022-09-16T13:35:57Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Self-supervised Learning for Label Sparsity in Computational Drug
Repositioning [2.523552067304274]
computational drug repositioning aims to discover new uses for marketed drugs.
The number of validated drug-disease associations is scarce compared to the number of drugs and diseases in the real world.
We propose a multi-task self-supervised learning framework for computational drug repositioning.
arXiv Detail & Related papers (2022-06-01T06:43:23Z) - DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
Annotations [90.27736364704108]
We present DrugOOD, a systematic OOD dataset curator and benchmark for AI-aided drug discovery.
DrugOOD comes with an open-source Python package that fully automates benchmarking processes.
We focus on one of the most crucial problems in AIDD: drug target binding affinity prediction.
arXiv Detail & Related papers (2022-01-24T12:32:48Z) - Two Step Joint Model for Drug Drug Interaction Extraction [82.49278654043577]
Drug-Drug Interaction (DDI) Extraction from Drug Labels challenge of Text Analysis Conference (TAC) 2018.
We propose a two step joint model to detect DDI and it's related mentions jointly.
A sequence tagging system (CNN-GRU encoder-decoder) finds precipitants first and search its fine-grained Trigger and determine the DDI for each precipitant in the second step.
arXiv Detail & Related papers (2020-08-28T15:30:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.