Hide-and-Shill: A Reinforcement Learning Framework for Market Manipulation Detection in Symphony-a Decentralized Multi-Agent System
- URL: http://arxiv.org/abs/2507.09179v1
- Date: Sat, 12 Jul 2025 07:55:40 GMT
- Title: Hide-and-Shill: A Reinforcement Learning Framework for Market Manipulation Detection in Symphony-a Decentralized Multi-Agent System
- Authors: Ronghua Shi, Yiou Liu, Xinyu Ying, Yang Tan, Yuchun Feng, Lynn Ai, Bill Shi, Xuhui Wang, Zhuang Liu,
- Abstract summary: Decentralized finance (DeFi) has introduced a new era of permissionless financial innovation but also led to unprecedented market manipulation.<n>We propose a Multi-Agent Reinforcement Learning framework for decentralized manipulation detection, modeling the interaction between manipulators and detectors as a dynamic adversarial game.<n>This framework identifies suspicious patterns using delayed token price reactions as financial indicators.
- Score: 4.808769904090313
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decentralized finance (DeFi) has introduced a new era of permissionless financial innovation but also led to unprecedented market manipulation. Without centralized oversight, malicious actors coordinate shilling campaigns and pump-and-dump schemes across various platforms. We propose a Multi-Agent Reinforcement Learning (MARL) framework for decentralized manipulation detection, modeling the interaction between manipulators and detectors as a dynamic adversarial game. This framework identifies suspicious patterns using delayed token price reactions as financial indicators.Our method introduces three innovations: (1) Group Relative Policy Optimization (GRPO) to enhance learning stability in sparse-reward and partially observable settings; (2) a theory-based reward function inspired by rational expectations and information asymmetry, differentiating price discovery from manipulation noise; and (3) a multi-modal agent pipeline that integrates LLM-based semantic features, social graph signals, and on-chain market data for informed decision-making.The framework is integrated within the Symphony system, a decentralized multi-agent architecture enabling peer-to-peer agent execution and trust-aware learning through distributed logs, supporting chain-verifiable evaluation. Symphony promotes adversarial co-evolution among strategic actors and maintains robust manipulation detection without centralized oracles, enabling real-time surveillance across global DeFi ecosystems.Trained on 100,000 real-world discourse episodes and validated in adversarial simulations, Hide-and-Shill achieves top performance in detection accuracy and causal attribution. This work bridges multi-agent systems with financial surveillance, advancing a new paradigm for decentralized market intelligence. All resources are available at the Hide-and-Shill GitHub repository to promote open research and reproducibility.
Related papers
- When Autonomy Goes Rogue: Preparing for Risks of Multi-Agent Collusion in Social Systems [78.04679174291329]
We introduce a proof-of-concept to simulate the risks of malicious multi-agent systems (MAS)<n>We apply this framework to two high-risk fields: misinformation spread and e-commerce fraud.<n>Our findings show that decentralized systems are more effective at carrying out malicious actions than centralized ones.
arXiv Detail & Related papers (2025-07-19T15:17:30Z) - AI Agent Architecture for Decentralized Trading of Alternative Assets [2.8195433571821162]
GoldMine OS is a research oriented architecture that employs multiple specialized AI agents to automate and secure the tokenization and exchange of physical gold into a blockchain based stablecoin ("OZ")<n>We describe four cooperative agents (Compliance, Token Issuance, Market Making, and Risk Control) and a coordinating core, and evaluate the system through simulation and a controlled pilot deployment.<n>In experiments the prototype delivers on demand token issuance in under 1.2 s, more than 100 times faster than manual.
arXiv Detail & Related papers (2025-07-15T09:11:19Z) - ReAgent-V: A Reward-Driven Multi-Agent Framework for Video Understanding [71.654781631463]
ReAgent-V is a novel agentic video understanding framework.<n>It integrates efficient frame selection with real-time reward generation during inference.<n>Extensive experiments on 12 datasets demonstrate significant gains in generalization and reasoning.
arXiv Detail & Related papers (2025-06-02T04:23:21Z) - Benchmarking LLMs' Swarm intelligence [50.544186914115045]
Large Language Models (LLMs) show potential for complex reasoning, yet their capacity for emergent coordination in Multi-Agent Systems (MAS) remains largely unexplored.<n>We introduce SwarmBench, a novel benchmark designed to systematically evaluate tasks of LLMs acting as decentralized agents.<n>We propose metrics for coordination effectiveness and analyze emergent group dynamics.
arXiv Detail & Related papers (2025-05-07T12:32:01Z) - Challenges and Innovations in LLM-Powered Fake News Detection: A Synthesis of Approaches and Future Directions [0.0]
pervasiveness of the dissemination of fake news through social media platforms poses critical risks to the trust of the general public.<n>Recent works include powering the detection using large language model advances in multimodal frameworks.<n>The review further identifies critical gaps in adaptability to dynamic social media trends, real-time, and cross-platform detection capabilities.
arXiv Detail & Related papers (2025-02-01T06:56:17Z) - BotDetect: A Decentralized Federated Learning Framework for Detecting Financial Bots on the EVM Blockchains [3.4636217357968904]
This paper presents a decentralized federated learning (DFL) approach for detecting financial bots within Virtual Machine (EVM)-based blockchains.<n>The proposed framework leverages federated learning, orchestrated through smart contracts, to detect malicious bot behavior.<n> Experimental results show that our DFL framework achieves high detection accuracy while maintaining scalability and robustness.
arXiv Detail & Related papers (2025-01-21T13:15:43Z) - Dynamic Analysis and Adaptive Discriminator for Fake News Detection [59.41431561403343]
We propose a Dynamic Analysis and Adaptive Discriminator (DAAD) approach for fake news detection.<n>For knowledge-based methods, we introduce the Monte Carlo Tree Search algorithm to leverage the self-reflective capabilities of large language models.<n>For semantic-based methods, we define four typical deceit patterns to reveal the mechanisms behind fake news creation.
arXiv Detail & Related papers (2024-08-20T14:13:54Z) - DAM: A Universal Dual Attention Mechanism for Multimodal Timeseries Cryptocurrency Trend Forecasting [3.8965079384103865]
This paper presents a novel Dual Attention Mechanism (DAM) for forecasting cryptocurrency trends using multimodal time-series data.
Our approach integrates critical cryptocurrency metrics with sentiment data from news and social media analyzed through CryptoBERT.
By combining elements of distributed systems, natural language processing, and financial forecasting, our method outperforms conventional models like LSTM and Transformer by up to 20% in prediction accuracy.
arXiv Detail & Related papers (2024-05-01T13:58:01Z) - SACHA: Soft Actor-Critic with Heuristic-Based Attention for Partially
Observable Multi-Agent Path Finding [3.4260993997836753]
We propose a novel multi-agent actor-critic method called Soft Actor-Critic with Heuristic-Based Attention (SACHA)
SACHA learns a neural network for each agent to selectively pay attention to the shortest path guidance from multiple agents within its field of view.
We demonstrate decent improvements over several state-of-the-art learning-based MAPF methods with respect to success rate and solution quality.
arXiv Detail & Related papers (2023-07-05T23:36:33Z) - Networked Communication for Decentralised Agents in Mean-Field Games [59.01527054553122]
We introduce networked communication to the mean-field game framework.<n>We prove that our architecture has sample guarantees bounded between those of the centralised- and independent-learning cases.<n>We show that our networked approach has significant advantages over both alternatives in terms of robustness to update failures and to changes in population size.
arXiv Detail & Related papers (2023-06-05T10:45:39Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z) - Monotonic Value Function Factorisation for Deep Multi-Agent
Reinforcement Learning [55.20040781688844]
QMIX is a novel value-based method that can train decentralised policies in a centralised end-to-end fashion.
We propose the StarCraft Multi-Agent Challenge (SMAC) as a new benchmark for deep multi-agent reinforcement learning.
arXiv Detail & Related papers (2020-03-19T16:51:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.