Capturing Unseen Spatial Extremes Through Knowledge-Informed Generative Modeling
- URL: http://arxiv.org/abs/2507.09211v1
- Date: Sat, 12 Jul 2025 09:06:45 GMT
- Title: Capturing Unseen Spatial Extremes Through Knowledge-Informed Generative Modeling
- Authors: Xinyue Liu, Xiao Peng, Shuyue Yan, Yuntian Chen, Dongxiao Zhang, Zhixiao Niu, Hui-Min Wang, Xiaogang He,
- Abstract summary: We develop DeepX-GAN to better capture the spatial structure of rare extremes.<n>We define two types of unseen extremes: "checkmate" extremes that directly hit targets, and "stalemate" extremes that narrowly miss.<n>We find that these unseen extremes disproportionately affect regions with high vulnerability and low socioeconomic readiness.
- Score: 9.672435929179073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Observed records of climate extremes provide an incomplete picture of risk, missing "unseen" extremes that exceed historical bounds. In parallel, neglecting spatial dependence undervalues the risk of synchronized hazards that amplify impacts. To address these challenges, we develop DeepX-GAN (Dependence-Enhanced Embedding for Physical eXtremes - Generative Adversarial Network), a knowledge-informed deep generative model designed to better capture the spatial structure of rare extremes. The zero-shot generalizability of DeepX-GAN enables simulation of unseen extremes that fall outside historical experience yet remain statistically plausible. We define two types of unseen extremes: "checkmate" extremes that directly hit targets, and "stalemate" extremes that narrowly miss. These unrealized scenarios expose latent risks in fragile systems and may reinforce a false sense of resilience if overlooked. Near misses, in particular, can prompt either proactive adaptation or dangerous complacency, depending on how they are interpreted. Applying DeepX-GAN to the Middle East and North Africa (MENA), we find that these unseen extremes disproportionately affect regions with high vulnerability and low socioeconomic readiness, but differ in urgency and interpretation. Future warming could expand and redistribute these unseen extremes, with emerging exposure hotspots in Indo-Pakistan and Central Africa. This distributional shift highlights critical blind spots in conventional hazard planning and underscores the need to develop spatially adaptive policies that anticipate emergent risk hotspots rather than simply extrapolating from historical patterns.
Related papers
- GraphVSSM: Graph Variational State-Space Model for Probabilistic Spatiotemporal Inference of Dynamic Exposure and Vulnerability for Regional Disaster Resilience Assessment [0.7237068561453082]
Graph Variational-Space Model (GraphVSSM) is a novel modular approach that integrates graph deep learning, state-space modeling, and variational inference.<n>We present three major results: a city-wide demonstration in Quezon City, Philippines; an investigation of sudden changes in the cyclone-impacted coastal Khukul community (Bangladesh) and mudslide-affected Freetown (Sierra Leone)
arXiv Detail & Related papers (2025-08-02T10:49:30Z) - Advancing Wildfire Risk Prediction via Morphology-Aware Curriculum Contrastive Learning [2.8646703612162243]
Wildfires significantly impact natural ecosystems and human health, leading to biodiversity loss, increased hydrogeological risks, and elevated emissions of toxic substances.<n>Data show a bias toward an imbalanced setting, where the incidence of wildfire events is significantly lower than typical situations.<n>This paper investigates how adopting a contrastive framework can address these challenges through enhanced latent representations for the patch's dynamic features.
arXiv Detail & Related papers (2025-07-23T14:23:45Z) - Frontier AI Risk Management Framework in Practice: A Risk Analysis Technical Report [51.17413460785022]
This report presents a comprehensive assessment of their frontier risks.<n>We identify critical risks in seven areas: cyber offense, biological and chemical risks, persuasion and manipulation, uncontrolled autonomous AI R&D, strategic deception and scheming, self-replication, and collusion.
arXiv Detail & Related papers (2025-07-22T12:44:38Z) - Constructing Extreme Heatwave Storylines with Differentiable Climate Models [49.1574468325115]
We present a novel framework that leverages a differentiable hybrid climate model, NeuralGCM, to optimize initial conditions and generate physically consistent worst-case heatwave trajectories.<n>Applying to the 2021 Pacific Northwest heatwave, our method produces heatwave intensity up to 3.7 $circ$C above the most extreme member of a 75-member ensemble.<n>Our results demonstrate that differentiable climate models can efficiently explore the upper tails of event likelihoods, providing a powerful new approach for constructing targeted storylines of extreme weather under climate change.
arXiv Detail & Related papers (2025-06-12T12:50:38Z) - Open-set Anomaly Segmentation in Complex Scenarios [88.11076112792992]
This paper introduces ComsAmy, a benchmark for open-set anomaly segmentation in complex scenarios.<n>ComsAmy encompasses a wide spectrum of adverse weather conditions, dynamic driving environments, and diverse anomaly types.<n>We propose a novel energy-entropy learning (EEL) strategy that integrates the complementary information from energy and entropy.
arXiv Detail & Related papers (2025-04-28T12:00:10Z) - Capturing Extreme Events in Turbulence using an Extreme Variational Autoencoder (xVAE) [2.393499494583]
Extreme variational Autoencoder (xVAE) embeds a max-infinitely divisible process with heavy-tailed distributions into a standard VAE framework.<n>xVAE reduces system dimensionality by learning non-linear latent representations of data.
arXiv Detail & Related papers (2025-02-07T06:17:31Z) - CRiskEval: A Chinese Multi-Level Risk Evaluation Benchmark Dataset for Large Language Models [46.93425758722059]
CRiskEval is a Chinese dataset meticulously designed for gauging the risk proclivities inherent in large language models (LLMs)
We define a new risk taxonomy with 7 types of frontier risks and 4 safety levels, including extremely hazardous,moderately hazardous, neutral and safe.
The dataset consists of 14,888 questions that simulate scenarios related to predefined 7 types of frontier risks.
arXiv Detail & Related papers (2024-06-07T08:52:24Z) - Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction [55.77015419028725]
We develop methods that permit valid control of risk when threshold and tradeoff parameters are chosen adaptively.
Our methodology supports monotone and nearly-monotone risks, but otherwise makes no distributional assumptions.
arXiv Detail & Related papers (2024-03-28T17:28:06Z) - Uncertainty Quantification for Forward and Inverse Problems of PDEs via
Latent Global Evolution [110.99891169486366]
We propose a method that integrates efficient and precise uncertainty quantification into a deep learning-based surrogate model.
Our method endows deep learning-based surrogate models with robust and efficient uncertainty quantification capabilities for both forward and inverse problems.
Our method excels at propagating uncertainty over extended auto-regressive rollouts, making it suitable for scenarios involving long-term predictions.
arXiv Detail & Related papers (2024-02-13T11:22:59Z) - Combining deep generative models with extreme value theory for synthetic
hazard simulation: a multivariate and spatially coherent approach [0.0]
Generative adversarial networks (GANs) are well-suited to such a problem due to their ability to implicitly learn the distribution of data in high-dimensional settings.
We employ a GAN to model the dependence structure for daily maximum wind speed, significant wave height, and total precipitation over the Bay of Bengal.
Once trained, the model can be used to efficiently generate thousands of realistic compound hazard events.
arXiv Detail & Related papers (2023-11-30T12:55:51Z) - Unsupervised Graph Deep Learning Reveals Emergent Flood Risk Profile of
Urban Areas [4.295013129588405]
This study presents an integrated urban flood-risk rating model based on a novel unsupervised graph deep learning model (FloodRisk-Net)
Flood risk is found to be spatially distributed in a hierarchical structure within each metropolitan statistical area (MSA), where the core city disproportionately bears the highest flood risk.
Multiple cities are found to have high overall flood-risk levels and low spatial inequality, indicating limited options for balancing urban development and flood-risk reduction.
arXiv Detail & Related papers (2023-09-26T01:40:36Z) - Uncertainty-Aware Probabilistic Graph Neural Networks for Road-Level Traffic Accident Prediction [6.570852598591727]
We introduce the Stemporal Zero-Inflated Tweedie Graph Neural Network STZITZTDGNN -- the first uncertainty-aware graph deep learning model in road traffic accident prediction for multisteps.
Our study demonstrates that STIDGNN can effectively inform targeted road monitoring, thereby improving urban road safety strategies.
arXiv Detail & Related papers (2023-09-10T16:35:47Z) - Capsa: A Unified Framework for Quantifying Risk in Deep Neural Networks [142.67349734180445]
Existing algorithms that provide risk-awareness to deep neural networks are complex and ad-hoc.
Here we present capsa, a framework for extending models with risk-awareness.
arXiv Detail & Related papers (2023-08-01T02:07:47Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
Earth system models (ESMs) are often used to generate future projections of climate change scenarios.
As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM.
Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator.
arXiv Detail & Related papers (2020-11-23T20:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.