論文の概要: EduFlow: Advancing MLLMs' Problem-Solving Proficiency through Multi-Stage, Multi-Perspective Critique
- arxiv url: http://arxiv.org/abs/2507.09374v1
- Date: Sat, 12 Jul 2025 18:44:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:23.054792
- Title: EduFlow: Advancing MLLMs' Problem-Solving Proficiency through Multi-Stage, Multi-Perspective Critique
- Title(参考訳): EduFlow:マルチステージ・マルチパースペクティブ批評家によるMLLMの問題解決能力の向上
- Authors: Chenglin Zhu, Tao Zhang, Chong Li, Mingan Lin, Zenan Zhou, Jian Xie,
- Abstract要約: 教育科学的推論の完全なパイプラインをカバーする最初のエンドツーエンドフレームワークであるEduFlowを紹介します。
コアとなるEduPRMは、プロセス認識の報酬モデルで、タグと正当化によって推論ステップを批判する。
本稿では,ドメイン適応型検索フレームワークであるEduMCTSを提案する。
- 参考スコア(独自算出の注目度): 10.26163930911606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal large language models (MLLMs) still perform poorly on scientific tasks, particularly those requiring multi-step and interpretable reasoning. Their limitations include insufficient scientific reasoning patterns, lack of global coherence in multi-step inference, and the absence of reflective self-correction, making them unreliable in structured scientific contexts. We introduce EduFlow, the first end-to-end framework that covers the full pipeline of educational scientific reasoning, including data selection, MCTS-based trajectory construction, model training, and output optimization. At its core is EduPRM, a process-aware reward model that critiques reasoning steps with tags and justifications. EduPRM is trained via curriculum learning on three complementary supervision sources: MCTS-guided trajectories, error-injected critiques, and teacher-student dialogues, enabling dynamic adaptation to multi-stage problem solving and iterative refinement during inference. We further propose EduMCTS, a domain-adapted search framework that introduces bootstrapping actions specifically designed for educational reasoning, such as a self-reflection mechanism that promotes reflective error correction. It further leverages EduPRM's fine-grained feedback to guide the search toward higher-quality reasoning trajectories. By applying self-consistency and rejection sampling, we constructed EduMCTS-160K, a large-scale dataset of educational reasoning trajectories. Extensive experiments demonstrate that EduFlow enhances reasoning consistency and coherence. Code, data, and models will be released.
- Abstract(参考訳): MLLM(Multimodal large language model)は、科学的タスク、特に多段階および解釈可能な推論を必要とするタスクにおいて、いまだに貧弱に機能する。
これらの制限には、科学的推論パターンの不足、多段階推論における世界的一貫性の欠如、反射的自己補正の欠如などが含まれており、構造化された科学的文脈では信頼できない。
EduFlowは、データ選択、MCTSベースの軌道構築、モデルトレーニング、出力最適化を含む、教育科学的推論の全パイプラインをカバーする、最初のエンドツーエンドフレームワークである。
コアとなるEduPRMは、プロセス認識の報酬モデルで、タグと正当化によって推論ステップを批判する。
EduPRMは、MCTS誘導の軌跡、エラー注入の批評、教師と学生の対話という3つの補完的な指導源でカリキュラムの学習を通じて訓練されており、推論中に多段階の問題解決と反復的洗練に動的に適応することができる。
EduMCTSも提案する。このドメイン適応型検索フレームワークは,自己回帰機構など,教育的推論に特化して設計されたブートストレッピングアクションを導入し,反射的誤り訂正を促進する。
さらに、EduPRMのきめ細かいフィードバックを活用して、高品質な推論軌道への探索を誘導する。
EduMCTS-160Kは,自己整合性および拒絶サンプリングを応用し,大規模な学習推論トラジェクトリデータセットを構築した。
大規模な実験では、EduFlowが推論の一貫性と一貫性を高めることが示されている。
コード、データ、モデルがリリースされる。
関連論文リスト
- Coherent Multimodal Reasoning with Iterative Self-Evaluation for Vision-Language Models [4.064135211977999]
大規模言語モデル (LLMs) と視覚言語モデル (LVLMs) は複雑で多段階のクロスモーダルな常識推論タスクに苦しむ。
我々は,LVLMの共通感覚推論能力を高める新しいアプローチであるコヒーレント・マルチモーダル推論フレームワーク(CMRF)を提案する。
CMRFは複雑なクエリを分解し、ステップバイステップの推論を生成し、エラーを自己修正することで人間の問題解決を模倣する。
論文 参考訳(メタデータ) (2025-08-04T20:33:58Z) - VL-Cogito: Progressive Curriculum Reinforcement Learning for Advanced Multimodal Reasoning [69.44871115752055]
本稿では,PCuRL(Progressive Curriculum Reinforcement Learning)フレームワークを用いて学習した高度なマルチモーダル推論モデルを提案する。
PCuRLは、難易度が徐々に増大するタスクを通じてモデルを体系的にガイドし、多様なマルチモーダルコンテキストにおける推論能力を大幅に向上させる。
本フレームワークは,(1)連続するRLトレーニング段階におけるトレーニング難度を動的に調整するオンライン難易度重み付け機構,(2)タスク複雑度に応じて推論経路長を適応的に調整する動的長報奨機構,の2つの重要なイノベーションを紹介する。
論文 参考訳(メタデータ) (2025-07-30T12:23:21Z) - Beyond Templates: Dynamic Adaptation of Reasoning Demonstrations via Feasibility-Aware Exploration [15.711365331854614]
本稿では,新しいデータ適応フレームワークである動的推論軌道(DART)について紹介する。
専門家のステップを均一に模倣する代わりに、DARTはステップワイド適応性推定によって導かれる選択的な模倣戦略を採用している。
我々は、DARTを複数の推論ベンチマークとモデルスケールで検証し、一般化とデータ効率を大幅に改善することを示した。
論文 参考訳(メタデータ) (2025-05-27T04:08:11Z) - DEL-ToM: Inference-Time Scaling for Theory-of-Mind Reasoning via Dynamic Epistemic Logic [28.54147281933252]
ToM(Theory-of-Mind)タスクは、小規模言語モデル(SLM)において、限られたスケールで独自の課題を提起する。
推論時間スケーリングによるToM推論を改善するフレームワークであるDEL-ToMを提案する。
論文 参考訳(メタデータ) (2025-05-22T23:52:56Z) - Will Pre-Training Ever End? A First Step Toward Next-Generation Foundation MLLMs via Self-Improving Systematic Cognition [89.50068130832635]
自己改善認知 (SIcog) は、マルチモーダル知識によって次世代のMLLMを構築するための自己学習フレームワークである。
ステップバイステップの視覚的理解のためのChain-of-Descriptionを提案し、詳細なマルチモーダル推論をサポートするために構造化されたChain-of-Thought(CoT)推論を統合する。
実験は、マルチモーダル認知を増強したMLLMの開発におけるSIcogの有効性を示す。
論文 参考訳(メタデータ) (2025-03-16T00:25:13Z) - Large Language Models Post-training: Surveying Techniques from Alignment to Reasoning [185.51013463503946]
大規模言語モデル(LLM)は、自然言語処理を根本的に変革し、会話システムから科学的探索まで、さまざまな領域で欠かせないものにしている。
これらの課題は、制限された推論能力、倫理的不確実性、最適なドメイン固有のパフォーマンスといった欠点に対処するために、先進的な訓練後言語モデル(PoLM)を必要とする。
本稿では,タスク固有の精度を向上するファインチューニング,倫理的コヒーレンスと人間の嗜好との整合性を保証するアライメント,報酬設計の課題によらず多段階の推論を進める推論,統合と適応の5つのパラダイムを体系的に追跡したPoLMの総合的な調査について述べる。
論文 参考訳(メタデータ) (2025-03-08T05:41:42Z) - LINGOLY-TOO: Disentangling Reasoning from Knowledge with Templatised Orthographic Obfuscation [1.2576388595811496]
自然言語を基盤とした挑戦的推論ベンチマークであるlingOLY-TOOを紹介する。
実言語で記述された推論問題をパーミュレートして、多数の質問のバリエーションを生成する。
実験と分析は、モデルが推論を回避し、事前の知識から回答できることを示している。
論文 参考訳(メタデータ) (2025-03-04T19:57:47Z) - Can MLLMs Reason in Multimodality? EMMA: An Enhanced MultiModal ReAsoning Benchmark [73.27104042215207]
EMMAは,数学,物理,化学,コーディングにまたがる有機マルチモーダル推論を対象とするベンチマークである。
EMMAタスクは、各モードで独立に推論することで対処できない高度なクロスモーダル推論を要求する。
EMMA上での最先端MLLMの評価は、複雑なマルチモーダルおよびマルチステップ推論タスクの処理において、重大な制限を生じさせる。
論文 参考訳(メタデータ) (2025-01-09T18:55:52Z) - Reinforcing Thinking through Reasoning-Enhanced Reward Models [6.636512424910708]
大規模言語モデル(LLM)は、推論時思考による複雑な多段階推論において大きな可能性を秘めている。
LLMは、知識境界に対する自己認識が限られているため、いつ思考をやめるかを決めるのに苦労する。
この研究は、LLM自身の推論プロセスを合成行動データに蒸留することで、これらの課題に対処する。
論文 参考訳(メタデータ) (2024-12-31T04:50:15Z) - Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.40788744292739]
本稿では、推論と批判モデルの役割を分離する2人プレイヤパラダイムを提案する。
まず、批判データを収集する自動化およびスケーラブルなフレームワークであるAutoMathCritiqueを提案する。
テスト時間における難解なクエリに対するアクターのパフォーマンスを,批判モデルが一貫して改善することが実証された。
論文 参考訳(メタデータ) (2024-11-25T17:11:54Z) - Can We Further Elicit Reasoning in LLMs? Critic-Guided Planning with Retrieval-Augmentation for Solving Challenging Tasks [68.49251303172674]
最先端の大規模言語モデル(LLM)は、目覚ましい問題解決能力を示すが、複雑な推論と事実の正しさに苦慮する可能性がある。
既存の手法では、チェーン・オブ・ソートと検索強化生成(RAG)の強みを利用して、複雑な問題をより単純なステップに分解し、検索を適用して事実の正しさを向上させる。
CR-Planner(CR-Planner, CR-Planner, CR-Planner)は, 微調整された批判モデルを利用して, 推論と検索の両方のプロセスを計画を通してガイドする新しいフレームワークである。
論文 参考訳(メタデータ) (2024-10-02T11:26:02Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Solution-oriented Agent-based Models Generation with Verifier-assisted
Iterative In-context Learning [10.67134969207797]
エージェントベースのモデル(ABM)は、仮説的な解決策やポリシーの提案と検証に不可欠なパラダイムである。
大きな言語モデル(LLM)は、ドメイン間の知識とプログラミング能力をカプセル化することで、このプロセスの難しさを軽減できる可能性がある。
SAGEは、ターゲット問題に対する自動モデリングおよびソリューション生成のために設計された、汎用的なソリューション指向のABM生成フレームワークである。
論文 参考訳(メタデータ) (2024-02-04T07:59:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。