Causality-informed Anomaly Detection in Partially Observable Sensor Networks: Moving beyond Correlations
- URL: http://arxiv.org/abs/2507.09742v1
- Date: Sun, 13 Jul 2025 18:48:34 GMT
- Title: Causality-informed Anomaly Detection in Partially Observable Sensor Networks: Moving beyond Correlations
- Authors: Xiaofeng Xiao, Bo Shen, Xubo Yue,
- Abstract summary: We introduce a causality-informed deep Q-network approach for partially observable sensor placement in anomaly detection.<n>By integrating causal information at each stage of Q-network training, our method achieves faster convergence and tighter theoretical error bounds.
- Score: 4.137681034935277
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Nowadays, as AI-driven manufacturing becomes increasingly popular, the volume of data streams requiring real-time monitoring continues to grow. However, due to limited resources, it is impractical to place sensors at every location to detect unexpected shifts. Therefore, it is necessary to develop an optimal sensor placement strategy that enables partial observability of the system while detecting anomalies as quickly as possible. Numerous approaches have been proposed to address this challenge; however, most existing methods consider only variable correlations and neglect a crucial factor: Causality. Moreover, although a few techniques incorporate causal analysis, they rely on interventions-artificially creating anomalies-to identify causal effects, which is impractical and might lead to catastrophic losses. In this paper, we introduce a causality-informed deep Q-network (Causal DQ) approach for partially observable sensor placement in anomaly detection. By integrating causal information at each stage of Q-network training, our method achieves faster convergence and tighter theoretical error bounds. Furthermore, the trained causal-informed Q-network significantly reduces the detection time for anomalies under various settings, demonstrating its effectiveness for sensor placement in large-scale, real-world data streams. Beyond the current implementation, our technique's fundamental insights can be applied to various reinforcement learning problems, opening up new possibilities for real-world causality-informed machine learning methods in engineering applications.
Related papers
- Robust Distribution Alignment for Industrial Anomaly Detection under Distribution Shift [51.24522135151649]
Anomaly detection plays a crucial role in quality control for industrial applications.<n>Existing methods attempt to address domain shifts by training generalizable models.<n>Our proposed method demonstrates superior results compared with state-of-the-art anomaly detection and domain adaptation methods.
arXiv Detail & Related papers (2025-03-19T05:25:52Z) - Explainable Online Unsupervised Anomaly Detection for Cyber-Physical Systems via Causal Discovery from Time Series [1.223779595809275]
State-of-the-art approaches based on deep learning via neural networks achieve outstanding performance at anomaly recognition.
We show that our method has higher training efficiency, outperforms the accuracy of state-of-the-art neural architectures.
arXiv Detail & Related papers (2024-04-15T15:42:12Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
This study introduces a taxonomy for log anomalies and explores automated data labeling to mitigate labeling challenges.
The study envisions a future where root cause analysis follows anomaly detection, unraveling the underlying triggers of anomalies.
arXiv Detail & Related papers (2023-12-22T15:04:20Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
This paper proposes a radial threat estimation method for energy pipelines based on distributed optical fiber sensing technology.
We introduce a continuous multi-view and multi-domain feature fusion methodology to extract comprehensive signal features.
We incorporate the concept of transfer learning through a pre-trained model, enhancing both recognition accuracy and training efficiency.
arXiv Detail & Related papers (2023-12-18T12:37:35Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
Real-time and accurate detecting of potential line failures is the first step to mitigating the extreme weather impact and activating emergency controls.
Power balance equations nonlinearity, increased uncertainty in generation during extreme events, and lack of grid observability compromise the efficiency of traditional data-driven failure detection methods.
This paper proposes a Physics-InformEd Line failure Detector (FIELD) that leverages grid topology information to reduce sample and time complexities and improve localization accuracy.
arXiv Detail & Related papers (2022-08-31T18:19:25Z) - Towards an Awareness of Time Series Anomaly Detection Models'
Adversarial Vulnerability [21.98595908296989]
We demonstrate that the performance of state-of-the-art anomaly detection methods is degraded substantially by adding only small adversarial perturbations to the sensor data.
We use different scoring metrics such as prediction errors, anomaly, and classification scores over several public and private datasets.
We demonstrate, for the first time, the vulnerabilities of anomaly detection systems against adversarial attacks.
arXiv Detail & Related papers (2022-08-24T01:55:50Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Graph Neural Network-Based Anomaly Detection in Multivariate Time Series [17.414474298706416]
We develop a new way to detect anomalies in high-dimensional time series data.
Our approach combines a structure learning approach with graph neural networks.
We show that our method detects anomalies more accurately than baseline approaches.
arXiv Detail & Related papers (2021-06-13T09:07:30Z) - A Survey on Anomaly Detection for Technical Systems using LSTM Networks [0.0]
Anomalies represent deviations from the intended system operation and can lead to decreased efficiency as well as partial or complete system failure.
In this article, a survey on state-of-the-art anomaly detection using deep neural and especially long short-term memory networks is conducted.
The investigated approaches are evaluated based on the application scenario, data and anomaly types as well as further metrics.
arXiv Detail & Related papers (2021-05-28T13:24:40Z) - Smart Anomaly Detection in Sensor Systems: A Multi-Perspective Review [0.0]
Anomaly detection is concerned with identifying data patterns that deviate remarkably from the expected behaviour.
This is an important research problem, due to its broad set of application domains, from data analysis to e-health, cybersecurity, predictive maintenance, fault prevention, and industrial automation.
We review state-of-the-art methods that may be employed to detect anomalies in the specific area of sensor systems.
arXiv Detail & Related papers (2020-10-27T09:56:16Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.