Multi-residual Mixture of Experts Learning for Cooperative Control in Multi-vehicle Systems
- URL: http://arxiv.org/abs/2507.09836v1
- Date: Mon, 14 Jul 2025 00:17:12 GMT
- Title: Multi-residual Mixture of Experts Learning for Cooperative Control in Multi-vehicle Systems
- Authors: Vindula Jayawardana, Sirui Li, Yashar Farid, Cathy Wu,
- Abstract summary: We introduce Multi-Residual Mixture of Expert Learning (MRMEL) for Lagrangian traffic control.<n>MRMEL augments a suboptimal nominal AV control policy by learning a residual correction.<n>We validate MRMEL using a case study in cooperative eco-driving at signalized intersections in Atlanta, Dallas Fort Worth, and Salt Lake City.
- Score: 5.5597941107270215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous vehicles (AVs) are becoming increasingly popular, with their applications now extending beyond just a mode of transportation to serving as mobile actuators of a traffic flow to control flow dynamics. This contrasts with traditional fixed-location actuators, such as traffic signals, and is referred to as Lagrangian traffic control. However, designing effective Lagrangian traffic control policies for AVs that generalize across traffic scenarios introduces a major challenge. Real-world traffic environments are highly diverse, and developing policies that perform robustly across such diverse traffic scenarios is challenging. It is further compounded by the joint complexity of the multi-agent nature of traffic systems, mixed motives among participants, and conflicting optimization objectives subject to strict physical and external constraints. To address these challenges, we introduce Multi-Residual Mixture of Expert Learning (MRMEL), a novel framework for Lagrangian traffic control that augments a given suboptimal nominal policy with a learned residual while explicitly accounting for the structure of the traffic scenario space. In particular, taking inspiration from residual reinforcement learning, MRMEL augments a suboptimal nominal AV control policy by learning a residual correction, but at the same time dynamically selects the most suitable nominal policy from a pool of nominal policies conditioned on the traffic scenarios and modeled as a mixture of experts. We validate MRMEL using a case study in cooperative eco-driving at signalized intersections in Atlanta, Dallas Fort Worth, and Salt Lake City, with real-world data-driven traffic scenarios. The results show that MRMEL consistently yields superior performance-achieving an additional 4%-9% reduction in aggregate vehicle emissions relative to the strongest baseline in each setting.
Related papers
- Smart Traffic Signals: Comparing MARL and Fixed-Time Strategies [0.0]
Urban traffic congestion, particularly at intersections, significantly impacts travel time, fuel consumption, and emissions.<n>Traditional fixed-time signal control systems often lack the adaptability to manage dynamic traffic patterns effectively.<n>This study explores the application of multi-agent reinforcement learning to optimize traffic signal coordination across multiple intersections.
arXiv Detail & Related papers (2025-05-20T15:59:44Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Drive is a hybrid framework that integrates a Teacher LLM to guide an attention-based Student DRL policy.<n>A self-attention mechanism then fuses these strategies with the DRL agent's exploration, accelerating policy convergence and boosting robustness.
arXiv Detail & Related papers (2025-02-03T14:22:03Z) - Agent-Agnostic Centralized Training for Decentralized Multi-Agent Cooperative Driving [17.659812774579756]
We propose an asymmetric actor-critic model that learns decentralized cooperative driving policies for autonomous vehicles.
By employing attention neural networks with masking, our approach efficiently manages real-world traffic dynamics and partial observability.
arXiv Detail & Related papers (2024-03-18T16:13:02Z) - LLM-Assisted Light: Leveraging Large Language Model Capabilities for Human-Mimetic Traffic Signal Control in Complex Urban Environments [3.7788636451616697]
This work introduces an innovative approach that integrates Large Language Models into traffic signal control systems.
A hybrid framework that augments LLMs with a suite of perception and decision-making tools is proposed.
The findings from our simulations attest to the system's adeptness in adjusting to a multiplicity of traffic environments.
arXiv Detail & Related papers (2024-03-13T08:41:55Z) - Generalizing Cooperative Eco-driving via Multi-residual Task Learning [6.864745785996583]
Multi-residual Task Learning (MRTL) is a generic learning framework based on multi-task learning.
MRTL decomposes control into nominal components that are effectively solved by conventional control methods and residual terms.
We employ MRTL for fleet-level emission reduction in mixed traffic using autonomous vehicles as a means of system control.
arXiv Detail & Related papers (2024-03-07T05:25:34Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Traj-MAE: Masked Autoencoders for Trajectory Prediction [69.7885837428344]
Trajectory prediction has been a crucial task in building a reliable autonomous driving system by anticipating possible dangers.
We propose an efficient masked autoencoder for trajectory prediction (Traj-MAE) that better represents the complicated behaviors of agents in the driving environment.
Our experimental results in both multi-agent and single-agent settings demonstrate that Traj-MAE achieves competitive results with state-of-the-art methods.
arXiv Detail & Related papers (2023-03-12T16:23:27Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Integrated Decision and Control at Multi-Lane Intersections with Mixed
Traffic Flow [6.233422723925688]
This paper develops a learning-based algorithm to deal with complex intersections with mixed traffic flows.
We first consider different velocity models for green and red lights in the training process and use a finite state machine to handle different modes of light transformation.
Then we design different types of distance constraints for vehicles, traffic lights, pedestrians, bicycles respectively and formulize the constrained optimal control problems.
arXiv Detail & Related papers (2021-08-30T07:55:32Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
Traffic signal control aims to coordinate traffic signals across intersections to improve the traffic efficiency of a district or a city.
Deep reinforcement learning (RL) has been applied to traffic signal control recently and demonstrated promising performance where each traffic signal is regarded as an agent.
We propose a novel Meta Variationally Intrinsic Motivated (MetaVIM) RL method to learn the decentralized policy for each intersection that considers neighbor information in a latent way.
arXiv Detail & Related papers (2021-01-04T03:06:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.