論文の概要: Sequence-Model-Guided Measurement Selection for Quantum State Learning
- arxiv url: http://arxiv.org/abs/2507.09891v1
- Date: Mon, 14 Jul 2025 03:50:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 20:53:35.146045
- Title: Sequence-Model-Guided Measurement Selection for Quantum State Learning
- Title(参考訳): 量子状態学習のためのシーケンスモデル誘導計測選択
- Authors: Jiaxin Huang, Yan Zhu, Giulio Chiribella, Ya-Dong Wu,
- Abstract要約: データ駆動で適応的な方法で効率的な測定選択を探索するシーケンスモデルアーキテクチャを備えたディープニューラルネットワークを導入する。
このモデルは、量子状態の線形および非線形特性の予測を含む様々なタスクに適用できる。
トポロジカル量子系では、タスクがバルク特性を予測する場合であっても、我々のモデルはシステムのバウンダリでの計測を推奨する傾向にある。
- 参考スコア(独自算出の注目度): 15.098042082558544
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Characterization of quantum systems from experimental data is a central problem in quantum science and technology. But which measurements should be used to gather data in the first place? While optimal measurement choices can be worked out for small quantum systems, the optimization becomes intractable as the system size grows large. To address this problem, we introduce a deep neural network with a sequence model architecture that searches for efficient measurement choices in a data-driven, adaptive manner. The model can be applied to a variety of tasks, including the prediction of linear and nonlinear properties of quantum states, as well as state clustering and state tomography tasks. In all these tasks, we find that the measurement choices identified by our neural network consistently outperform the uniformly random choice. Intriguingly, for topological quantum systems, our model tends to recommend measurements at the system's boundaries, even when the task is to predict bulk properties. This behavior suggests that the neural network may have independently discovered a connection between boundaries and bulk, without having been provided any built-in knowledge of quantum physics.
- Abstract(参考訳): 実験データから量子システムのキャラクタリゼーションは、量子科学と技術の中心的な問題である。
しかし、そもそもデータを集めるのにどの測定値を使うべきか?
小さな量子系に対して最適な測定選択を行うことができるが、システムのサイズが大きくなるにつれて、最適化は難解になる。
この問題に対処するために、データ駆動適応方式で効率的な測定選択を探索するシーケンスモデルアーキテクチャを備えたディープニューラルネットワークを導入する。
このモデルは、量子状態の線形および非線形特性の予測や状態クラスタリング、状態トモグラフィータスクなど、様々なタスクに適用できる。
これらすべてのタスクにおいて、ニューラルネットワークによって特定される測定選択は、一様ランダムな選択よりも一貫して優れています。
興味深いことに、トポロジカル量子系では、タスクがバルク特性を予測することであっても、我々のモデルはシステムのバウンダリでの計測を推奨する傾向にある。
この挙動は、ニューラルネットワークが量子物理学の知識を組み込まずに、境界とバルクの間の接続を独立に発見したことを示唆している。
関連論文リスト
- Quantum Convolutional Neural Network with Flexible Stride [7.362858964229726]
本稿では,新しい量子畳み込みニューラルネットワークアルゴリズムを提案する。
異なるタスクに対応するために、柔軟にストライドを調整できます。
データスケールの指数加速度を、従来のものに比べて少ないメモリで達成することができる。
論文 参考訳(メタデータ) (2024-12-01T02:37:06Z) - Learning quantum properties from short-range correlations using multi-task networks [3.7228085662092845]
相関長が一定である多体量子状態の様々な量子特性を予測できるニューラルネットワークモデルを提案する。
このモデルはマルチタスク学習の技術に基づいており、従来のシングルタスクアプローチよりもいくつかの利点があることを示す。
論文 参考訳(メタデータ) (2023-10-18T08:53:23Z) - Learning the tensor network model of a quantum state using a few
single-qubit measurements [0.0]
人工量子システムの次元性は常に増大し、その特徴付けとベンチマークのために非常に効率的な方法が要求される。
本稿では,未知の量子系のテンソルネットワークモデルを学習する構成的かつ数値的に効率的なプロトコルを提案する。
論文 参考訳(メタデータ) (2023-09-01T11:11:52Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - Adaptive, Continuous Entanglement Generation for Quantum Networks [59.600944425468676]
量子ネットワークは情報伝達のために、遠方のノードにおける量子ビット間の絡み合いに依存している。
本稿では、前回の要求からの情報を用いてランダムに生成された量子リンクの選択をガイドする適応型スキームを提案する。
また、遅延性能の違いが量子ネットワークのリソースの最適な割り当ての必要性を示唆する量子メモリ割り当てシナリオについても検討する。
論文 参考訳(メタデータ) (2022-12-17T05:40:09Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
いくつかの分子量子ハミルトニアンの複雑な基底状態波動関数を学習するために、一般的なニューラルネットワークモデルを適用する。
ニューラルネットワークモデルを使用することで、単一コピー計測結果だけで観測対象を再構築するよりも堅牢な改善が得られます。
論文 参考訳(メタデータ) (2022-06-30T17:45:05Z) - Adaptive Quantum State Tomography with Active Learning [0.0]
本稿では,能動学習を用いた量子状態トモグラフィーの効率的なスキームを提案し,実装する。
本手法は, 1次元のXXZモデルと運動的に制約されたスピン鎖の基底状態だけでなく, 様々なエンタングルメントの程度で異なるマルチキュービット状態の再構成を行う。
提案手法は,量子多体システムにおける物理的洞察を得るとともに,量子デバイスをベンチマークし,特徴付けるためにも有効である。
論文 参考訳(メタデータ) (2022-03-29T16:23:10Z) - Flexible learning of quantum states with generative query neural
networks [4.540894342435848]
複数の量子状態にまたがる学習は、生成的クエリニューラルネットワークによって達成できることを示す。
我々のネットワークは、古典的にシミュレートされたデータでオフラインでトレーニングでき、後に未知の量子状態を実際の実験データから特徴づけるのに使うことができる。
論文 参考訳(メタデータ) (2022-02-14T15:48:27Z) - Towards Quantum Graph Neural Networks: An Ego-Graph Learning Approach [47.19265172105025]
グラフ構造化データのための新しいハイブリッド量子古典アルゴリズムを提案し、これをEgo-graph based Quantum Graph Neural Network (egoQGNN)と呼ぶ。
egoQGNNはテンソル積とユニティ行列表現を用いてGNN理論フレームワークを実装し、必要なモデルパラメータの数を大幅に削減する。
このアーキテクチャは、現実世界のデータからヒルベルト空間への新しいマッピングに基づいている。
論文 参考訳(メタデータ) (2022-01-13T16:35:45Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Random Sampling Neural Network for Quantum Many-Body Problems [0.0]
本稿では,対話型多体システムのランダムサンプリング行列要素に対して,自己教師型学習手法を用いてパターン認識手法を用いたランダムサンプリングニューラルネットワーク(Random Smpling Neural Networks, RNN)を提案する。
RSNNの適用性をテストするために、横フィールドを持つIsingモデル、Fermi-Hubbardモデル、Spin-$1/2$$XXZ$モデルなど、正確に解決可能ないくつかの1Dモデルが使用されている。
論文 参考訳(メタデータ) (2020-11-10T15:52:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。