論文の概要: Random Sampling Neural Network for Quantum Many-Body Problems
- arxiv url: http://arxiv.org/abs/2011.05199v1
- Date: Tue, 10 Nov 2020 15:52:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-24 19:06:39.692417
- Title: Random Sampling Neural Network for Quantum Many-Body Problems
- Title(参考訳): 量子多体問題に対するランダムサンプリングニューラルネットワーク
- Authors: Chen-Yu Liu, Daw-Wei Wang
- Abstract要約: 本稿では,対話型多体システムのランダムサンプリング行列要素に対して,自己教師型学習手法を用いてパターン認識手法を用いたランダムサンプリングニューラルネットワーク(Random Smpling Neural Networks, RNN)を提案する。
RSNNの適用性をテストするために、横フィールドを持つIsingモデル、Fermi-Hubbardモデル、Spin-$1/2$$XXZ$モデルなど、正確に解決可能ないくつかの1Dモデルが使用されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The eigenvalue problem of quantum many-body systems is a fundamental and
challenging subject in condensed matter physics, since the dimension of the
Hilbert space (and hence the required computational memory and time) grows
exponentially as the system size increases. A few numerical methods have been
developed for some specific systems, but may not be applicable in others. Here
we propose a general numerical method, Random Sampling Neural Networks (RSNN),
to utilize the pattern recognition technique for the random sampling matrix
elements of an interacting many-body system via a self-supervised learning
approach. Several exactly solvable 1D models, including Ising model with
transverse field, Fermi-Hubbard model, and spin-$1/2$ $XXZ$ model, are used to
test the applicability of RSNN. Pretty high accuracy of energy spectrum,
magnetization and critical exponents etc. can be obtained within the strongly
correlated regime or near the quantum phase transition point, even the
corresponding RSNN models are trained in the weakly interacting regime. The
required computation time scales linearly to the system size. Our results
demonstrate that it is possible to combine the existing numerical methods for
the training process and RSNN to explore quantum many-body problems in a much
wider parameter regime, even for strongly correlated systems.
- Abstract(参考訳): 量子多体系の固有値問題は、ヒルベルト空間の次元(したがって必要となる計算メモリと時間)が系のサイズが大きくなるにつれて指数関数的に増加するため、凝縮物質物理学の基本的な課題である。
いくつかの特定のシステム向けにいくつかの数値法が開発されているが、他のシステムでは適用できない可能性がある。
本稿では,対話型多体システムのランダムサンプリング行列要素に対して,自己教師型学習手法を用いてパターン認識手法を応用するために,ランダムサンプリングニューラルネットワーク(RSNN)を提案する。
ising model with transverse field, fermi-hubbard model, spin-$1/2$$$xxz$ modelなど、完全可解な1dモデルはrsnnの適用性をテストするために用いられる。
エネルギースペクトル、磁化および臨界指数のかなり高い精度は、強い相関状態または量子相転移点付近で得ることができ、対応するRSNNモデルでさえ弱い相互作用状態において訓練される。
必要な計算時間はシステムサイズに線形にスケールする。
以上の結果から,トレーニングプロセスとRSNNの既存の数値手法を組み合わせることで,より広いパラメータ条件下での量子多体問題の探索が可能であることが示唆された。
関連論文リスト
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
ランダム量子スピン系の進化をモデル化するためにFNOを用いる。
量子波動関数全体の2n$の代わりに、コンパクトなハミルトン観測可能集合にFNOを適用する。
論文 参考訳(メタデータ) (2024-09-05T07:18:09Z) - Neural network approach to quasiparticle dispersions in doped
antiferromagnets [0.0]
異なる1次元および2次元格子上でのボソニックおよびフェルミオンの$t-J$モデルを表現する神経量子状態の能力について検討する。
本稿では,ニューラルネットワークの状態表現から分散関係を計算する手法を提案する。
論文 参考訳(メタデータ) (2023-10-12T17:59:33Z) - Neural Network Solutions of Bosonic Quantum Systems in One Dimension [0.0]
我々は、ニューラルネットワークを用いて、いくつかの異なる積分可能なボソニック量子系を1次元で研究することで、方法論をベンチマークする。
多数の粒子を持つシステムに対する手続きのスケーラビリティをテストする一方で、ニューラルネットワークに対称関数入力を導入し、区別不能な粒子の交換対称性を強制する。
論文 参考訳(メタデータ) (2023-09-05T16:08:48Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - Scalable approach to many-body localization via quantum data [69.3939291118954]
多体局在は、量子多体物理学の非常に難しい現象である。
計算コストの高いステップを回避できるフレキシブルニューラルネットワークベースの学習手法を提案する。
我々のアプローチは、量子多体物理学の新たな洞察を提供するために、大規模な量子実験に適用することができる。
論文 参考訳(メタデータ) (2022-02-17T19:00:09Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - A Neural-Network Variational Quantum Algorithm for Many-Body Dynamics [15.435967947933404]
量子多体系の時間進化をシミュレートするニューラルネットワーク-ネットワーク変分量子アルゴリズムを提案する。
提案アルゴリズムは、測定コストの低い短期量子コンピュータに効率よく実装することができる。
論文 参考訳(メタデータ) (2020-08-31T02:54:09Z) - Recurrent Quantum Neural Networks [7.6146285961466]
リカレントニューラルネットワークは、機械学習における多くのシーケンス対シーケンスモデルの基盤となっている。
非自明なタスクに対して実証可能な性能を持つ量子リカレントニューラルネットワーク(QRNN)を構築する。
我々はQRNNをMNIST分類で評価し、QRNNに各画像ピクセルを供給し、また、最新のデータ拡張を前処理のステップとして利用する。
論文 参考訳(メタデータ) (2020-06-25T17:59:44Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。