論文の概要: CWNet: Causal Wavelet Network for Low-Light Image Enhancement
- arxiv url: http://arxiv.org/abs/2507.10689v1
- Date: Mon, 14 Jul 2025 18:04:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:02.824721
- Title: CWNet: Causal Wavelet Network for Low-Light Image Enhancement
- Title(参考訳): CWNet:低照度画像強調のための因果ウェーブレットネットワーク
- Authors: Tongshun Zhang, Pingping Liu, Yubing Lu, Mengen Cai, Zijian Zhang, Zhe Zhang, Qiuzhan Zhou,
- Abstract要約: 因果推論にウェーブレット変換を利用する新しいアーキテクチャであるCWNetを提案する。
CWNetは、現在の最先端メソッドを複数のデータセットで大幅に上回っている。
- 参考スコア(独自算出の注目度): 7.070309595950833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional Low-Light Image Enhancement (LLIE) methods primarily focus on uniform brightness adjustment, often neglecting instance-level semantic information and the inherent characteristics of different features. To address these limitations, we propose CWNet (Causal Wavelet Network), a novel architecture that leverages wavelet transforms for causal reasoning. Specifically, our approach comprises two key components: 1) Inspired by the concept of intervention in causality, we adopt a causal reasoning perspective to reveal the underlying causal relationships in low-light enhancement. From a global perspective, we employ a metric learning strategy to ensure causal embeddings adhere to causal principles, separating them from non-causal confounding factors while focusing on the invariance of causal factors. At the local level, we introduce an instance-level CLIP semantic loss to precisely maintain causal factor consistency. 2) Based on our causal analysis, we present a wavelet transform-based backbone network that effectively optimizes the recovery of frequency information, ensuring precise enhancement tailored to the specific attributes of wavelet transforms. Extensive experiments demonstrate that CWNet significantly outperforms current state-of-the-art methods across multiple datasets, showcasing its robust performance across diverse scenes. Code is available at https://github.com/bywlzts/CWNet-Causal-Wavelet-Network.
- Abstract(参考訳): 従来の低照度画像強調法(LLIE)は主に、インスタンスレベルのセマンティック情報や異なる特徴の固有の特徴を無視して、均一な明るさ調整に重点を置いている。
これらの制約に対処するため,因果推論にウェーブレット変換を利用する新しいアーキテクチャであるCWNet(Causal Wavelet Network)を提案する。
具体的には、我々のアプローチは2つの重要な要素から構成される。
1) 因果関係の介入という概念に触発されて, 低照度化における因果関係を明らかにするために因果推論の視点を取り入れた。
グローバルな観点からは,因果的な埋め込みが因果的原則に適合することを保証するため,因果的要因の分散に着目しつつ,非因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果的因果
局所レベルでは、因果因子の一貫性を正確に維持するために、インスタンスレベルのCLIPセマンティックロスを導入する。
2)本研究の因果解析に基づき,ウェーブレット変換をベースとしたバックボーンネットワークを提案する。
大規模な実験では、CWNetが現在の最先端メソッドを複数のデータセットで大幅に上回っており、さまざまなシーンで堅牢なパフォーマンスを示している。
コードはhttps://github.com/bywlzts/CWNet-Causal-Wavelet-Networkで入手できる。
関連論文リスト
- Intriguing Frequency Interpretation of Adversarial Robustness for CNNs and ViTs [15.427772252189211]
画像分類タスクの周波数領域における逆例の興味深い特性について検討する。
高周波成分の増加に伴い, 逆成分と自然成分との性能差がますます顕著になる。
論文 参考訳(メタデータ) (2025-06-15T15:00:52Z) - STAF: Sinusoidal Trainable Activation Functions for Implicit Neural Representation [7.2888019138115245]
Inlicit Neural Representations (INR) は、連続的な信号をモデリングするための強力なフレームワークとして登場した。
ReLUベースのネットワークのスペクトルバイアスは、十分に確立された制限であり、ターゲット信号の微細な詳細を捕捉する能力を制限する。
Sinusoidal Trainable Function Activation (STAF)について紹介する。
STAFは本質的に周波数成分を変調し、自己適応型スペクトル学習を可能にする。
論文 参考訳(メタデータ) (2025-02-02T18:29:33Z) - WTDUN: Wavelet Tree-Structured Sampling and Deep Unfolding Network for Image Compressed Sensing [51.94493817128006]
マルチスケールウェーブレットサブバンド上で直接動作するWTDUNという新しいウェーブレットドメインの深層展開フレームワークを提案する。
本手法は,ウェーブレット係数の固有間隔とマルチスケール構造を利用して,木構造によるサンプリングと再構成を実現する。
論文 参考訳(メタデータ) (2024-11-25T12:31:03Z) - Causal Context Adjustment Loss for Learned Image Compression [72.7300229848778]
近年,学習画像圧縮(lic)技術は,特にRD性能の点で従来の手法を上回りつつある。
現在の技術のほとんどは、自己回帰エントロピーモデルを備えたVAEベースで、デコードされた因果コンテキストを利用してRD性能を向上する。
本稿では,提案した因果文脈調整損失を用いて因果文脈を的確に調整する方法を初めて検討する。
論文 参考訳(メタデータ) (2024-10-07T09:08:32Z) - Robust Network Learning via Inverse Scale Variational Sparsification [55.64935887249435]
時間連続な逆スケール空間の定式化において、逆スケールの変動スペーサー化フレームワークを導入する。
周波数ベースの手法とは異なり、我々の手法は小さな特徴を滑らかにすることでノイズを除去するだけでなく、ノイズを除去する。
各種騒音に対する頑健性の向上によるアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-09-27T03:17:35Z) - WiNet: Wavelet-based Incremental Learning for Efficient Medical Image Registration [68.25711405944239]
深部画像登録は異常な精度と高速な推測を示した。
近年の進歩は、粗大から粗大の方法で密度変形場を推定するために、複数のカスケードまたはピラミッドアーキテクチャを採用している。
本稿では,様々なスケールにわたる変位/速度場に対して,スケールワイブレット係数を漸進的に推定するモデル駆動WiNetを提案する。
論文 参考訳(メタデータ) (2024-07-18T11:51:01Z) - Wavelet-based Bi-dimensional Aggregation Network for SAR Image Change Detection [53.842568573251214]
3つのSARデータセットによる実験結果から、我々のWBANetは現代最先端の手法を著しく上回っていることが明らかとなった。
我々のWBANetは、それぞれのデータセットで98.33%、96.65%、96.62%の正確な分類(PCC)を達成している。
論文 参考訳(メタデータ) (2024-07-18T04:36:10Z) - Functional Regularization for Reinforcement Learning via Learned Fourier
Features [98.90474131452588]
本稿では、入力を学習されたフーリエベースに埋め込むことにより、深層強化学習のための簡単なアーキテクチャを提案する。
その結果、状態ベースと画像ベースの両方のRLのサンプル効率が向上することがわかった。
論文 参考訳(メタデータ) (2021-12-06T18:59:52Z) - Amplitude-Phase Recombination: Rethinking Robustness of Convolutional
Neural Networks in Frequency Domain [31.182376196295365]
CNNは、トレーニング画像の高周波成分と密接に関連する局所最適値に収束する傾向にある。
現在の画像の位相スペクトルとイントラクタ画像の振幅スペクトルを再結合して設計されたデータ拡張に関する新しい視点。
論文 参考訳(メタデータ) (2021-08-19T04:04:41Z) - SFANet: A Spectrum-aware Feature Augmentation Network for
Visible-Infrared Person Re-Identification [12.566284647658053]
クロスモダリティマッチング問題に対するSFANetという新しいスペクトル認識特徴量化ネットワークを提案する。
grayscale-spectrumイメージで学習すると、モダリティの不一致を低減し、内部構造関係を検出することができる。
特徴レベルでは、特定および粉砕可能な畳み込みブロックの数のバランスをとることにより、従来の2ストリームネットワークを改善します。
論文 参考訳(メタデータ) (2021-02-24T08:57:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。