論文の概要: GenAI-Enabled Backlog Grooming in Agile Software Projects: An Empirical Study
- arxiv url: http://arxiv.org/abs/2507.10753v1
- Date: Mon, 14 Jul 2025 19:22:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 19:46:02.859638
- Title: GenAI-Enabled Backlog Grooming in Agile Software Projects: An Empirical Study
- Title(参考訳): アジャイルソフトウェアプロジェクトにおけるGenAI対応のバックロググミッシング - 実証的研究
- Authors: Kasper Lien Oftebro, Anh Nguyen-Duc, Kai-Kristian Kemell,
- Abstract要約: 本研究では、ジェネレーティブAI(GenAI)アシスタントが、正確さや透明性を犠牲にすることなく、アジャイルソフトウェアプロジェクトにおけるバックログのグルーミングを自動化することができるかどうかを検討する。
我々は,ベクトルデータベースにバックログ問題を埋め込んだJiraプラグインを開発し,コサイン類似性によって重複を検知し,GPT-4oモデルを利用してマージや削除,あるいは新たな問題を提案する。
- 参考スコア(独自算出の注目度): 2.9073118555228232
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective backlog management is critical for ensuring that development teams remain aligned with evolving requirements and stakeholder expectations. However, as product backlogs consistently grow in scale and complexity, they tend to become cluttered with redundant, outdated, or poorly defined tasks, complicating prioritization and decision making processes. This study investigates whether a generative-AI (GenAI) assistant can automate backlog grooming in Agile software projects without sacrificing accuracy or transparency. Through Design Science cycles, we developed a Jira plug-in that embeds backlog issues with the vector database, detects duplicates via cosine similarity, and leverage the GPT-4o model to propose merges, deletions, or new issues. We found that AI-assisted backlog grooming achieved 100 percent precision while reducing the time-to-completion by 45 percent. The findings demonstrated the tool's potential to streamline backlog refinement processes while improving user experiences.
- Abstract(参考訳): 効果的なバックログ管理は、開発チームが進化する要求とステークホルダーの期待に一致し続けることを保証するために重要です。
しかし、プロダクトバックログが常に規模と複雑さで成長するにつれて、優先順位付けと意思決定プロセスが複雑になるため、冗長、時代遅れ、あるいは未定義のタスクで混乱する傾向があります。
本研究では、ジェネレーティブAI(GenAI)アシスタントが、正確さや透明性を犠牲にすることなく、アジャイルソフトウェアプロジェクトにおけるバックログのグルーミングを自動化することができるかどうかを検討する。
Design Scienceのサイクルを通じて、我々は、バックログ問題をベクトルデータベースに埋め込んだJiraプラグインを開発し、コサイン類似性を通じて重複を検出し、GPT-4oモデルを利用してマージ、削除、あるいは新しい問題を提案する。
AIによるバックログのグルーミングが100%の精度を実現し、完成までの時間を45%削減しました。
この結果は、バックログのリファインメントプロセスを合理化し、ユーザエクスペリエンスを向上させるツールの可能性を示した。
関連論文リスト
- Augmenting Large Language Models with Static Code Analysis for Automated Code Quality Improvements [0.36832029288386137]
本研究では,大規模言語モデル(LLM)をソフトウェア開発に組み込んだコード問題検出と修正自動化について検討した。
静的コード分析フレームワークは、大規模なソフトウェアプロジェクトの中でバグや脆弱性、コードの臭いなどの問題を検出する。
検索拡張世代(RAG)は、リビジョンの関連性と精度を高めるために実装される。
論文 参考訳(メタデータ) (2025-06-12T03:39:25Z) - Exploring Prompt Patterns in AI-Assisted Code Generation: Towards Faster and More Effective Developer-AI Collaboration [3.1861081539404137]
本稿では,AI支援コード生成に必要となるインタラクション数を最小化するために,構造化されたプロンプトパターンの適用について検討する。
我々は,開発者とAI間の往復通信を減らすことの有効性を評価するために,異なる7つのプロンプトパターンを分析した。
論文 参考訳(メタデータ) (2025-06-02T12:43:08Z) - R&D-Agent: Automating Data-Driven AI Solution Building Through LLM-Powered Automated Research, Development, and Evolution [60.80016554091364]
R&D-Agentは反復探索のための二重エージェントフレームワークである。
Researcherエージェントはパフォーマンスフィードバックを使用してアイデアを生成し、Developerエージェントはエラーフィードバックに基づいてコードを洗練する。
R&D-AgentはMLE-Benchで評価され、最高のパフォーマンスの機械学習エンジニアリングエージェントとして登場した。
論文 参考訳(メタデータ) (2025-05-20T06:07:00Z) - Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute [61.00662702026523]
より大規模なモデルではなく、推論時間の増加を活用する統合されたテスト時間計算スケーリングフレームワークを提案する。
当社のフレームワークには,内部TTCと外部TTCの2つの補完戦略が組み込まれている。
当社の textbf32B モデルは,DeepSeek R1 671B や OpenAI o1 など,はるかに大きなモデルを上回る 46% の課題解決率を実現している。
論文 参考訳(メタデータ) (2025-03-31T07:31:32Z) - DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal [55.13854171147104]
大規模言語モデル(LLM)は、自然言語処理、データ分析、ソフトウェア開発など、さまざまな領域に革命をもたらした。
符号化エージェントのための新しい推論時間計算スケーリングアプローチである動的アクション再サンプリング(DARS)を提案する。
我々は、SWE-Bench Liteベンチマークに対する我々のアプローチを評価し、このスケーリング戦略がClude 3.5 Sonnet V2で55%のパス@kスコアを達成したことを実証した。
論文 参考訳(メタデータ) (2025-03-18T14:02:59Z) - Lingma SWE-GPT: An Open Development-Process-Centric Language Model for Automated Software Improvement [62.94719119451089]
Lingma SWE-GPTシリーズは、現実世界のコード提出活動から学び、シミュレーションする。
Lingma SWE-GPT 72BはGitHubの30.20%の問題を解決する。
論文 参考訳(メタデータ) (2024-11-01T14:27:16Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - AutoCodeRover: Autonomous Program Improvement [8.66280420062806]
プログラムの改善を自律的に達成するために、GitHubの問題を解決する自動化アプローチを提案する。
AutoCodeRoverと呼ばれるアプローチでは、LLMは洗練されたコード検索機能と組み合わせられ、最終的にプログラムの変更やパッチにつながります。
SWE-bench-lite(300の現実のGitHubイシュー)の実験では、GitHubの問題を解決する効果が向上している(SWE-bench-liteでは19%)。
論文 参考訳(メタデータ) (2024-04-08T11:55:09Z) - Automated User Story Generation with Test Case Specification Using Large Language Model [0.0]
要件文書からユーザストーリーを自動生成するツール「GeneUS」を開発した。
アウトプットはフォーマットで提供され、ダウンストリーム統合の可能性は人気のあるプロジェクト管理ツールに開放されます。
論文 参考訳(メタデータ) (2024-04-02T01:45:57Z) - Transforming Software Development with Generative AI: Empirical Insights on Collaboration and Workflow [2.6124032579630114]
Generative AI(GenAI)は、ソフトウェア開発者などの知識労働者がタスクを解決し、ソフトウェア製品の開発に協力する方法を根本的に変えた。
ChatGPTやCopilotといったイノベーティブなツールの導入によって,さまざまな問題に対してソフトウェア開発を支援し,拡張する新たな機会が生まれました。
我々の研究は、ChatGPTがソフトウェア開発者のワークフローにおけるパラダイムシフトを表していることを明らかにしている。この技術は、開発者がより効率的に作業できるようにし、学習プロセスをスピードアップし、退屈で反復的なタスクを減らすことでモチベーションを高める。
論文 参考訳(メタデータ) (2024-02-12T12:36:29Z) - ChatDev: Communicative Agents for Software Development [84.90400377131962]
ChatDevはチャットを利用したソフトウェア開発フレームワークで、特別なエージェントがコミュニケーション方法についてガイドされる。
これらのエージェントは、統一された言語ベースのコミュニケーションを通じて、設計、コーディング、テストフェーズに積極的に貢献する。
論文 参考訳(メタデータ) (2023-07-16T02:11:34Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
本研究では,不確実性に関する情報を伝達することで,プログラマがより迅速かつ正確にコードを生成することができるかどうかを検討する。
トークンのハイライトは、編集される可能性が最も高いので、タスクの完了が早くなり、よりターゲットを絞った編集が可能になることがわかりました。
論文 参考訳(メタデータ) (2023-02-14T18:43:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。