論文の概要: Large Language Models Versus Static Code Analysis Tools: A Systematic Benchmark for Vulnerability Detection
- arxiv url: http://arxiv.org/abs/2508.04448v1
- Date: Wed, 06 Aug 2025 13:48:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.740039
- Title: Large Language Models Versus Static Code Analysis Tools: A Systematic Benchmark for Vulnerability Detection
- Title(参考訳): 大規模言語モデルVersus静的コード解析ツール:脆弱性検出のためのシステムベンチマーク
- Authors: Damian Gnieciak, Tomasz Szandala,
- Abstract要約: 業界標準の3つの静的コード分析ツール(Sonar、CodeQL、Snyk Code)と、GitHub Modelsプラットフォーム(GPT-4.1、Mistral Large、DeepSeek V3)にホストされた最先端の3つの大規模言語モデルを評価した。
63の脆弱性を埋め込んだ10の現実世界のC#プロジェクトのキュレートされたスイートを使用して、古典的な精度(精度、リコール、Fスコア)、分析のレイテンシ、粒度、真の肯定性を検証するために必要な開発者の労力を測定します。
開発初期段階の言語モデルを採用して、広義のコンテキスト認識検出と検出を行う、ハイブリッドパイプラインを推奨します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Modern software relies on a multitude of automated testing and quality assurance tools to prevent errors, bugs and potential vulnerabilities. This study sets out to provide a head-to-head, quantitative and qualitative evaluation of six automated approaches: three industry-standard rule-based static code-analysis tools (SonarQube, CodeQL and Snyk Code) and three state-of-the-art large language models hosted on the GitHub Models platform (GPT-4.1, Mistral Large and DeepSeek V3). Using a curated suite of ten real-world C# projects that embed 63 vulnerabilities across common categories such as SQL injection, hard-coded secrets and outdated dependencies, we measure classical detection accuracy (precision, recall, F-score), analysis latency, and the developer effort required to vet true positives. The language-based scanners achieve higher mean F-1 scores,0.797, 0.753 and 0.750, than their static counterparts, which score 0.260, 0.386 and 0.546, respectively. LLMs' advantage originates from superior recall, confirming an ability to reason across broader code contexts. However, this benefit comes with substantial trade-offs: DeepSeek V3 exhibits the highest false-positive ratio, all language models mislocate issues at line-or-column granularity due to tokenisation artefacts. Overall, language models successfully rival traditional static analysers in finding real vulnerabilities. Still, their noisier output and imprecise localisation limit their standalone use in safety-critical audits. We therefore recommend a hybrid pipeline: employ language models early in development for broad, context-aware triage, while reserving deterministic rule-based scanners for high-assurance verification. The open benchmark and JSON-based result harness released with this paper lay a foundation for reproducible, practitioner-centric research into next-generation automated code security.
- Abstract(参考訳): 現代のソフトウェアは、エラーやバグ、潜在的な脆弱性を防ぐために、多数の自動テストと品質保証ツールに依存しています。
業界標準のルールベースの静的コード分析ツール(SonarQube、CodeQL、Snyk Code)3つと、GitHub Modelsプラットフォーム(GPT-4.1、Mistral Large、DeepSeek V3)にホストされた最先端の大規模言語モデルである。
SQLインジェクション、ハードコードされたシークレット、古い依存関係など、一般的なカテゴリに63の脆弱性を埋め込んだ10の現実世界のC#プロジェクトのキュレートされたスイートを使用して、古典的な検出精度(精度、リコール、Fスコア)、分析遅延、真の肯定性を検証するために必要な開発者の努力を測定する。
言語ベースのスキャナーは、それぞれ0.260、0.386、0.546の静的なスコアよりも平均F-1スコア0.797、0.753、0.750のスコアを達成している。
LLMsの利点は、より広範なコードコンテキストにまたがる推論能力を確認する優れたリコールに由来する。
DeepSeek V3は、最も高い偽陽性比を示し、すべての言語モデルは、トークン化アーティファクトによる行または列の粒度の問題を誤って配置します。
全体として、言語モデルは、真の脆弱性を見つける上で、従来の静的アナライザに匹敵することに成功した。
それでも、彼らのノイズの多い出力と不正確なローカライゼーションは、安全クリティカルな監査におけるスタンドアローンの使用を制限する。
そこで我々は,広義のコンテキスト認識トリアージのために開発初期段階の言語モデルを採用するとともに,決定論的ルールベーススキャナを高信頼度検証のために保持する,ハイブリッドパイプラインを推奨する。
この論文でリリースされたオープンベンチマークとJSONベースの結果ハーネスは、次世代の自動コードセキュリティに関する再現可能な実践者中心の研究の基礎を築いたものです。
関連論文リスト
- LLMEval-3: A Large-Scale Longitudinal Study on Robust and Fair Evaluation of Large Language Models [51.55869466207234]
静的ベンチマークにおけるLLM(Large Language Models)の既存の評価は、データの汚染やリーダーボードのオーバーフィッティングに弱い。
LLMの動的評価のためのフレームワークであるLLMEval-3を紹介する。
LLEval-3は、220kの卒業生レベルの質問からなるプロプライエタリなバンク上に構築されており、評価実行毎に未確認のテストセットを動的にサンプリングする。
論文 参考訳(メタデータ) (2025-08-07T14:46:30Z) - MalCodeAI: Autonomous Vulnerability Detection and Remediation via Language Agnostic Code Reasoning [0.0]
MalCodeAIは、自律的なコードセキュリティ分析と修復のための言語に依存しないパイプラインである。
コード分解と意味推論をQwen2.5-Coder-3B-Instructモデルで組み合わせる。
MalCodeAIは、レッドハットスタイルのエクスプロイトトレース、CVSSベースのリスクスコアリング、ゼロショットの一般化をサポートし、複雑なゼロデイ脆弱性を検出する。
論文 参考訳(メタデータ) (2025-07-15T01:25:04Z) - Decompiling Smart Contracts with a Large Language Model [51.49197239479266]
Etherscanの78,047,845のスマートコントラクトがデプロイされているにも関わらず(2025年5月26日現在)、わずか767,520 (1%)がオープンソースである。
この不透明さは、オンチェーンスマートコントラクトバイトコードの自動意味解析を必要とする。
バイトコードを可読でセマンティックに忠実なSolidityコードに変換する,先駆的な逆コンパイルパイプラインを導入する。
論文 参考訳(メタデータ) (2025-06-24T13:42:59Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
大規模言語モデル(LLM)によるコード生成は、ますます本番環境で採用されているが、コード品質の保証には失敗している。
実運用品質のコードを生成するためにLLMにインセンティブを与える強化学習フレームワークであるREALを提案する。
論文 参考訳(メタデータ) (2025-05-28T17:57:47Z) - CodeMirage: A Multi-Lingual Benchmark for Detecting AI-Generated and Paraphrased Source Code from Production-Level LLMs [15.25980318643715]
大規模言語モデル(LLM)は現代のソフトウェア開発に不可欠なものとなり、膨大な量のAI生成ソースコードを生み出している。
既存のベンチマークは不足している -- ほとんどの場合、限られたプログラム言語のみをカバーし、能力の低い生成モデルに依存している。
私たちは、広く使われている10のプログラミング言語にまたがるベンチマークであるCodeMirageを紹介します。
論文 参考訳(メタデータ) (2025-05-27T03:25:12Z) - VADER: A Human-Evaluated Benchmark for Vulnerability Assessment, Detection, Explanation, and Remediation [0.8087612190556891]
VADERは174の現実世界のソフトウェア脆弱性で構成されており、それぞれがGitHubから慎重にキュレーションされ、セキュリティ専門家によって注釈付けされている。
各脆弱性ケースに対して、モデルは欠陥を特定し、Common Weaknession(CWE)を使用して分類し、その根本原因を説明し、パッチを提案し、テストプランを策定する。
ワンショットプロンプト戦略を用いて、VADER上で6つの最先端LCM(Claude 3.7 Sonnet, Gemini 2.5 Pro, GPT-4.1, GPT-4.5, Grok 3 Beta, o3)をベンチマークする。
我々の結果は現在の状態を示している。
論文 参考訳(メタデータ) (2025-05-26T01:20:44Z) - Everything You Wanted to Know About LLM-based Vulnerability Detection But Were Afraid to Ask [30.819697001992154]
大規模言語モデルは、自動脆弱性検出のための有望なツールである。
LLMは現実世界の脆弱性を検出するのに本当に効果的か?
本稿では, LLM は (i) 信頼できないこと, (ii) コードパッチに敏感であること, (iii) モデルスケールにまたがる性能評価の3つを, 広く支持されているコミュニティの信念に異議を唱える。
論文 参考訳(メタデータ) (2025-04-18T05:32:47Z) - Reasoning with LLMs for Zero-Shot Vulnerability Detection [0.9208007322096533]
textbfVulnSageは,多種多様な大規模オープンソースソフトウェアプロジェクトから収集した,総合的な評価フレームワークである。
このフレームワークは、関数レベル、ファイルレベル、関数間の複数の粒度解析をサポートする。
Baseline、Chain-of-context、Think、Think & verifyの4つの異なるゼロショットプロンプト戦略を採用している。
論文 参考訳(メタデータ) (2025-03-22T23:59:17Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal [64.9938658716425]
SORRY-Benchは、安全でないユーザ要求を認識し拒否する大規模言語モデル(LLM)能力を評価するためのベンチマークである。
まず、既存の手法では、安全でないトピックの粗い分類を使い、いくつかのきめ細かいトピックを過剰に表現している。
第二に、プロンプトの言語的特徴とフォーマッティングは、様々な言語、方言など、多くの評価において暗黙的にのみ考慮されているように、しばしば見過ごされる。
論文 参考訳(メタデータ) (2024-06-20T17:56:07Z) - Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities [12.82645410161464]
5つの異なるセキュリティデータセットから5,000のコードサンプルに対して、16の事前学習された大規模言語モデルの有効性を評価する。
全体として、LSMは脆弱性の検出において最も穏やかな効果を示し、データセットの平均精度は62.8%、F1スコアは0.71である。
ステップバイステップ分析を含む高度なプロンプト戦略は、F1スコア(平均0.18まで)で実世界のデータセット上でのLLMのパフォーマンスを著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-11-16T13:17:20Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。