Try Harder: Hard Sample Generation and Learning for Clothes-Changing Person Re-ID
- URL: http://arxiv.org/abs/2507.11119v1
- Date: Tue, 15 Jul 2025 09:14:01 GMT
- Title: Try Harder: Hard Sample Generation and Learning for Clothes-Changing Person Re-ID
- Authors: Hankun Liu, Yujian Zhao, Guanglin Niu,
- Abstract summary: Hard samples pose a significant challenge in person re-identification (ReID) tasks.<n>Their inherent ambiguity or similarity, coupled with the lack of explicit definitions, makes them a fundamental bottleneck.<n>We propose a novel multimodal-guided Hard Sample Generation and Learning framework.
- Score: 4.256800812615341
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hard samples pose a significant challenge in person re-identification (ReID) tasks, particularly in clothing-changing person Re-ID (CC-ReID). Their inherent ambiguity or similarity, coupled with the lack of explicit definitions, makes them a fundamental bottleneck. These issues not only limit the design of targeted learning strategies but also diminish the model's robustness under clothing or viewpoint changes. In this paper, we propose a novel multimodal-guided Hard Sample Generation and Learning (HSGL) framework, which is the first effort to unify textual and visual modalities to explicitly define, generate, and optimize hard samples within a unified paradigm. HSGL comprises two core components: (1) Dual-Granularity Hard Sample Generation (DGHSG), which leverages multimodal cues to synthesize semantically consistent samples, including both coarse- and fine-grained hard positives and negatives for effectively increasing the hardness and diversity of the training data. (2) Hard Sample Adaptive Learning (HSAL), which introduces a hardness-aware optimization strategy that adjusts feature distances based on textual semantic labels, encouraging the separation of hard positives and drawing hard negatives closer in the embedding space to enhance the model's discriminative capability and robustness to hard samples. Extensive experiments on multiple CC-ReID benchmarks demonstrate the effectiveness of our approach and highlight the potential of multimodal-guided hard sample generation and learning for robust CC-ReID. Notably, HSAL significantly accelerates the convergence of the targeted learning procedure and achieves state-of-the-art performance on both PRCC and LTCC datasets. The code is available at https://github.com/undooo/TryHarder-ACMMM25.
Related papers
- Progressive Mastery: Customized Curriculum Learning with Guided Prompting for Mathematical Reasoning [43.12759195699103]
Large Language Models (LLMs) have achieved remarkable performance across various reasoning tasks, yet post-training is constrained by inefficient sample utilization and inflexible difficulty samples processing.<n>We propose Customized Curriculum Learning (CCL), a novel framework with two key innovations.<n>First, we introduce model-adaptive difficulty definition that customizes curriculum datasets based on each model's individual capabilities rather than using predefined difficulty metrics.<n>Second, we develop "Guided Prompting," which dynamically reduces sample difficulty through strategic hints, enabling effective utilization of challenging samples that would otherwise degrade performance.
arXiv Detail & Related papers (2025-06-04T15:31:46Z) - Unlocking the Potential of Difficulty Prior in RL-based Multimodal Reasoning [69.64809103333839]
We investigate how explicitly modeling problem's difficulty prior information shapes the effectiveness of reinforcement learning based fine-tuning for multimodal reasoning.<n>Our approach demonstrates significant performances across various multi-modal mathematical reasoning benchmarks with only 2K+0.6K two-stage training data.
arXiv Detail & Related papers (2025-05-19T15:43:10Z) - CLIP-DFGS: A Hard Sample Mining Method for CLIP in Generalizable Person Re-Identification [42.429118831928214]
We propose a hard sample mining method called DFGS (Depth-First Graph Sampler) based on depth-first search.
By leveraging the powerful cross-modal learning capabilities of CLIP, we aim to apply our DFGS method to extract challenging samples and form mini-batches with high discriminative difficulty.
Our results demonstrate significant improvements over other methods, confirming the effectiveness of DFGS in providing challenging samples.
arXiv Detail & Related papers (2024-10-15T04:25:58Z) - Cross-Modal Few-Shot Learning: a Generative Transfer Learning Framework [58.362064122489166]
This paper introduces the Cross-modal Few-Shot Learning task, which aims to recognize instances across multiple modalities while relying on scarce labeled data.<n>We propose a Generative Transfer Learning framework by simulating how humans abstract and generalize concepts.<n>We show that the GTL achieves state-of-the-art performance across seven multi-modal datasets across RGB-Sketch, RGB-Infrared, and RGB-Depth.
arXiv Detail & Related papers (2024-10-14T16:09:38Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - Contrastive Transformer Learning with Proximity Data Generation for
Text-Based Person Search [60.626459715780605]
Given a descriptive text query, text-based person search aims to retrieve the best-matched target person from an image gallery.
Such a cross-modal retrieval task is quite challenging due to significant modality gap, fine-grained differences and insufficiency of annotated data.
In this paper, we propose a simple yet effective dual Transformer model for text-based person search.
arXiv Detail & Related papers (2023-11-15T16:26:49Z) - Learning Transferable Adversarial Robust Representations via Multi-view
Consistency [57.73073964318167]
We propose a novel meta-adversarial multi-view representation learning framework with dual encoders.
We demonstrate the effectiveness of our framework on few-shot learning tasks from unseen domains.
arXiv Detail & Related papers (2022-10-19T11:48:01Z) - FakeCLR: Exploring Contrastive Learning for Solving Latent Discontinuity
in Data-Efficient GANs [24.18718734850797]
Data-Efficient GANs (DE-GANs) aim to learn generative models with a limited amount of training data.
Contrastive learning has shown the great potential of increasing the synthesis quality of DE-GANs.
We propose FakeCLR, which only applies contrastive learning on fake samples.
arXiv Detail & Related papers (2022-07-18T14:23:38Z) - Dynamic Contrastive Distillation for Image-Text Retrieval [90.05345397400144]
We present a novel plug-in dynamic contrastive distillation (DCD) framework to compress image-text retrieval models.
We successfully apply our proposed DCD strategy to two state-of-the-art vision-language pretrained models, i.e. ViLT and METER.
Experiments on MS-COCO and Flickr30K benchmarks show the effectiveness and efficiency of our DCD framework.
arXiv Detail & Related papers (2022-07-04T14:08:59Z) - Hard Samples Rectification for Unsupervised Cross-domain Person
Re-identification [29.293741858274146]
We propose a Hard Samples Rectification learning scheme which resolves the weakness of original clustering-based methods.
Our HSR contains two parts, an inter-camera mining method that helps recognize a person under different views (hard positive) and a part-based homogeneity technique that makes the model discriminate different persons but with similar appearance (hard negative)
By rectifying those two hard cases, the re-ID model can learn effectively and achieve promising results on two large-scale benchmarks.
arXiv Detail & Related papers (2021-06-14T07:38:42Z) - Self-Damaging Contrastive Learning [92.34124578823977]
Unlabeled data in reality is commonly imbalanced and shows a long-tail distribution.
This paper proposes a principled framework called Self-Damaging Contrastive Learning to automatically balance the representation learning without knowing the classes.
Our experiments show that SDCLR significantly improves not only overall accuracies but also balancedness.
arXiv Detail & Related papers (2021-06-06T00:04:49Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) is a challenging cross-modality pedestrian retrieval problem.
Existing VI-ReID methods tend to learn global representations, which have limited discriminability and weak robustness to noisy images.
We propose a novel dynamic dual-attentive aggregation (DDAG) learning method by mining both intra-modality part-level and cross-modality graph-level contextual cues for VI-ReID.
arXiv Detail & Related papers (2020-07-18T03:08:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.