Improving Wi-Fi Network Performance Prediction with Deep Learning Models
- URL: http://arxiv.org/abs/2507.11168v1
- Date: Tue, 15 Jul 2025 10:18:32 GMT
- Title: Improving Wi-Fi Network Performance Prediction with Deep Learning Models
- Authors: Gabriele Formis, Amanda Ericson, Stefan Forsstrom, Kyi Thar, Gianluca Cena, Stefano Scanzio,
- Abstract summary: This study makes use of machine learning techniques to predict channel quality in a Wi-Fi network in terms of the frame delivery ratio.<n>Predictions can be used proactively to adjust communication parameters at runtime and optimize network operations for industrial applications.
- Score: 0.9632663495317711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing need for robustness, reliability, and determinism in wireless networks for industrial and mission-critical applications is the driver for the growth of new innovative methods. The study presented in this work makes use of machine learning techniques to predict channel quality in a Wi-Fi network in terms of the frame delivery ratio. Predictions can be used proactively to adjust communication parameters at runtime and optimize network operations for industrial applications. Methods including convolutional neural networks and long short-term memory were analyzed on datasets acquired from a real Wi-Fi setup across multiple channels. The models were compared in terms of prediction accuracy and computational complexity. Results show that the frame delivery ratio can be reliably predicted, and convolutional neural networks, although slightly less effective than other models, are more efficient in terms of CPU usage and memory consumption. This enhances the model's usability on embedded and industrial systems.
Related papers
- Efficient Federated Learning Tiny Language Models for Mobile Network Feature Prediction [13.32608465848856]
In telecommunications, Autonomous Networks (ANs) automatically adjust configurations based on specific requirements (e.g. bandwidth, available resources)<n>Here, Federated Learning (FL) allows multiple AN cells - each equipped with Neural Networks (NNs) - to collaboratively train models while preserving data privacy.<n>We investigate NNCodec, a implementation of the ISO/IEC Neural Network Coding (NNC) standard, within a novel FL framework that integrates tiny language models (TLMs)<n>Our experimental results on the Berlin V2X dataset demonstrate that NNCodec achieves transparent compression while reducing communication overhead to below 1%.
arXiv Detail & Related papers (2025-04-02T17:54:06Z) - Neural Conformal Control for Time Series Forecasting [54.96087475179419]
We introduce a neural network conformal prediction method for time series that enhances adaptivity in non-stationary environments.<n>Our approach acts as a neural controller designed to achieve desired target coverage, leveraging auxiliary multi-view data with neural network encoders.<n>We empirically demonstrate significant improvements in coverage and probabilistic accuracy, and find that our method is the only one that combines good calibration with consistency in prediction intervals.
arXiv Detail & Related papers (2024-12-24T03:56:25Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Improving the Real-Data Driven Network Evaluation Model for Digital Twin Networks [0.2499907423888049]
Digital Twin Networks (DTN) technology is expected to become the foundation technology for autonomous networks.
DTN has the advantage of being able to operate and system networks based on real-time collected data in a closed-loop system.
Various AI research and standardization work is ongoing to optimize the use of DTN.
arXiv Detail & Related papers (2024-05-14T09:55:03Z) - Linear Combination of Exponential Moving Averages for Wireless Channel
Prediction [2.34863357088666]
In this work, prediction models based on the exponential moving average (EMA) are investigated in depth.
A new model that we called EMA linear combination (ELC) is introduced, explained, and evaluated experimentally.
arXiv Detail & Related papers (2023-12-13T07:44:05Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - A Lightweight, Efficient and Explainable-by-Design Convolutional Neural
Network for Internet Traffic Classification [9.365794791156972]
This paper introduces a new Lightweight, Efficient and eXplainable-by-design convolutional neural network (LEXNet) for Internet traffic classification.
LEXNet relies on a new residual block (for lightweight and efficiency purposes) and prototype layer (for explainability)
Based on a commercial-grade dataset, our evaluation shows that LEXNet succeeds to maintain the same accuracy as the best performing state-of-the-art neural network.
arXiv Detail & Related papers (2022-02-11T10:21:34Z) - Communication-Efficient Separable Neural Network for Distributed
Inference on Edge Devices [2.28438857884398]
We propose a novel method of exploiting model parallelism to separate a neural network for distributed inferences.
Under proper specifications of devices and configurations of models, our experiments show that the inference of large neural networks on edge clusters can be distributed and accelerated.
arXiv Detail & Related papers (2021-11-03T19:30:28Z) - perf4sight: A toolflow to model CNN training performance on Edge GPUs [16.61258138725983]
This work proposes perf4sight, an automated methodology for developing accurate models that predict CNN training memory footprint and latency.
With PyTorch as the framework and NVIDIA Jetson TX2 as the target device, the developed models predict training memory footprint and latency with 95% and 91% accuracy respectively.
arXiv Detail & Related papers (2021-08-12T07:55:37Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
We propose a framework for converting state-of-the-art segmentation models to MESS networks.
specially trained CNNs that employ parametrised early exits along their depth to save during inference on easier samples.
We co-optimise the number, placement and architecture of the attached segmentation heads, along with the exit policy, to adapt to the device capabilities and application-specific requirements.
arXiv Detail & Related papers (2021-06-07T11:37:03Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.