論文の概要: Time series classification of satellite data using LSTM networks: an approach for predicting leaf-fall to minimize railroad traffic disruption
- arxiv url: http://arxiv.org/abs/2507.11702v1
- Date: Tue, 15 Jul 2025 20:13:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-17 19:00:11.136946
- Title: Time series classification of satellite data using LSTM networks: an approach for predicting leaf-fall to minimize railroad traffic disruption
- Title(参考訳): LSTMネットワークを用いた衛星データの時系列分類 : 鉄道交通破壊の最小化を目的とした落葉予測手法
- Authors: Hein de Wilde, Ali Mohammed Mansoor Alsahag, Pierre Blanchet,
- Abstract要約: 本研究は, 特殊な予測手法と最新の衛星データソースを活用する予測システムを考案する試みである。
多スペクトルおよび気象衛星データと組み合わせた地表面の葉落ちデータに基づいてトレーニングされたLSTMネットワークは、葉落ち開始予測に6.32日、葉落ち終了予測に9.31日というルート平均二乗誤差を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Railroad traffic disruption as a result of leaf-fall cost the UK rail industry over 300 million per year and measures to mitigate such disruptions are employed on a large scale, with 1.67 million kilometers of track being treated in the UK in 2021 alone. Therefore, the ability to anticipate the timing of leaf-fall would offer substantial benefits for rail network operators, enabling the efficient scheduling of such mitigation measures. However, current methodologies for predicting leaf-fall exhibit considerable limitations in terms of scalability and reliability. This study endeavors to devise a prediction system that leverages specialized prediction methods and the latest satellite data sources to generate both scalable and reliable insights into leaf-fall timings. An LSTM network trained on ground-truth leaf-falling data combined with multispectral and meteorological satellite data demonstrated a root-mean-square error of 6.32 days for predicting the start of leaf-fall and 9.31 days for predicting the end of leaf-fall. The model, which improves upon previous work on the topic, offers promising opportunities for the optimization of leaf mitigation measures in the railway industry and the improvement of our understanding of complex ecological systems.
- Abstract(参考訳): リーフフォールによる鉄道交通の破壊により、イギリスの鉄道産業は年間3億以上のコストがかかり、そのような破壊を緩和するための措置が大規模に採用され、2021年だけで170万キロの線路がイギリスで扱われている。
したがって,落葉時期を予測できる能力は,鉄道事業者にとって大きな利益をもたらし,そのような緩和策の効率的なスケジューリングを可能にした。
しかし,現在の落葉予測手法は,スケーラビリティや信頼性に限界がある。
本研究は,葉の落ち時期に関する信頼性とスケーラブルな知見を両立させるため,特殊な予測手法と最新の衛星データソースを活用する予測システムを考案する。
多スペクトルおよび気象衛星データと組み合わせた地表面の葉落ちデータに基づいてトレーニングされたLSTMネットワークは、葉落ち開始予測に6.32日、葉落ち終了予測に9.31日というルート平均二乗誤差を示した。
このモデルは, 鉄道産業における葉の緩和対策の最適化と, 複雑な生態系の理解の向上に期待できる機会を提供するものである。
関連論文リスト
- Deep learning for predicting hauling fleet production capacity under uncertainties in open pit mines using real and simulated data [0.0]
本稿では,実世界の運用記録と合成機械的破壊シナリオを融合したディープラーニングフレームワークを提案する。
XGBoost回帰器は14.3%の絶対誤差(MedAE)と15.1%のLong Short-Term Memoryネットワークの2つのアーキテクチャを評価した。
論文 参考訳(メタデータ) (2025-06-04T12:12:56Z) - The Journey Matters: Average Parameter Count over Pre-training Unifies Sparse and Dense Scaling Laws [51.608402959163925]
本稿では,大規模言語モデルに対する最適スパース事前学習構成の体系的検討を行う。
総トレーニング計算の25%でプルーニングを開始し、75%で終了すると、ほぼ最適の最終評価損失が得られることがわかった。
本稿では,事前学習よりも平均パラメータ数を使用するように,チンチラスケーリング法を修正した新しいスケーリング法を提案する。
論文 参考訳(メタデータ) (2025-01-21T20:23:22Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFTは、モデルのパラメータの大部分を凍結し、新しく導入されたプロンプトとアダプタの調整に集中する微調整戦略である。
実験の結果,Forecast-PEFTは動作予測タスクにおいて従来のフルチューニング手法よりも優れていた。
Forecast-FTは予測性能をさらに改善し、従来のベースライン法よりも最大9.6%向上した。
論文 参考訳(メタデータ) (2024-07-28T19:18:59Z) - Improve Load Forecasting in Energy Communities through Transfer Learning using Open-Access Synthetic Profiles [1.124958340749622]
10GWエネルギーユーティリティの予測エラーを1%削減すれば、年間最大1.6億ドルの節約が可能になる。
本稿では,移動学習手法を用いて,オープンアクセス型合成負荷プロファイルを用いた負荷予測モデルの事前学習を提案する。
論文 参考訳(メタデータ) (2024-07-11T12:17:31Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - GenCast: Diffusion-based ensemble forecasting for medium-range weather [10.845679586464026]
我々は,世界最上位の中距離気象予測よりも高い技術と速度を持つ確率的気象モデルであるGenCastを紹介する。
GenCastは、12時間のステップと0.25度の緯度で、80以上の地表と大気の変数を8分で15日間のグローバルな予測のアンサンブルを生成する。
評価した1320の目標の97.4%よりも高いスキルを持ち、極端な天候、熱帯のサイクロン、風力発電を予測できる。
論文 参考訳(メタデータ) (2023-12-25T19:30:06Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - Efficient Traffic State Forecasting using Spatio-Temporal Network
Dependencies: A Sparse Graph Neural Network Approach [6.203371866342754]
交通ネットワークにおける交通予測は、効果的な交通運営と管理にとって最重要事項である。
現在の研究では、長期的な交通予測(30分以上)は依然として難しい。
予測精度を保ちながら、トレーニングコストに対するスパーストレーニングを提案する。
論文 参考訳(メタデータ) (2022-11-06T05:41:39Z) - STG-GAN: A spatiotemporal graph generative adversarial networks for
short-term passenger flow prediction in urban rail transit systems [11.167132464665578]
短期の旅客フロー予測は、都市交通システムを管理する上で重要であるが、難しい課題である。
本稿では,予測精度が高く,高い効率,メモリ占有率の低い,ディープラーニングに基づく時間グラフ生成対向ネットワーク(STG-GAN)モデルを提案する。
本研究は、特に現実の応用の観点から、短期の乗客フロー予測を行う上で、批判的な経験を提供することができる。
論文 参考訳(メタデータ) (2022-02-10T13:18:11Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - Regularization methods for the short-term forecasting of the Italian
electric load [77.34726150561087]
イタリアの電力負荷の24のプロファイル全体を予測する問題はマルチタスク学習問題として対処される。
96x96行列重みは96x96行列を形成し、正方形の領域にサンプリングされた表面として見ることができる。
表面の自由度を下げるための規則化とスパーシリティの異なるアプローチを探索し、得られた予測をイタリアのトランスミッション・システム・オペレーター・テルナの予測と比較した。
論文 参考訳(メタデータ) (2021-12-08T22:15:06Z) - Multi-Airport Delay Prediction with Transformers [0.0]
TFT(Temporal Fusion Transformer)は、複数の空港での出発と到着の遅れを同時に予測するために提案された。
このアプローチは、予測時に既知の入力の複雑な時間的ダイナミクスをキャプチャし、選択された遅延メトリクスを4時間先まで予測することができる。
論文 参考訳(メタデータ) (2021-11-04T21:58:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。